Practice Test(DOMAIN3)

Domain 3 Exam.

A minimum of 70% is required to pass.

Results

Wonderful!

There may be content you haven’t seen yet.

#1. Lacy’s manager assigned her to research intrusion detection systems for the new dispatching center. Lacey identifies the top five products and compares their ratings. Which of the following is the most used evaluation criteria framework today for this purpose?

〇:Common Criteria

Common Criteria was created in the early 1990s as a way to combine the strengths of both the Trustworthy Computer Systems Evaluation Criteria (TCSEC) and the Information Technology Security Evaluation Criteria (ITSEC) and eliminate their weaknesses. Common Criteria is more flexible than TCSEC and easier than ITSEC. Common Criteria is recognized worldwide and assists consumers by reducing the complexity of assessments and eliminating the need to understand the definitions and meanings of different assessments in different assessment schemes. This also helps manufacturers because they can now build a specific set of requirements when they want to market their products internationally, rather than having to meet several different evaluation criteria under different rules and requirements.

 

×:ITSEC

This is incorrect because it is not the most widely used information technology security evaluation standard. ITSEC was the first attempt to establish a single standard for evaluating the security attributes of computer systems and products in many European countries. In addition, ITSEC separates functionality and assurance in its evaluations, giving each a separate rating. It was developed to provide greater flexibility than TCSEC and addresses integrity, availability, and confidentiality in networked systems. The goal of ITSEC was to become the global standard for product evaluation, but it failed to achieve that goal and was replaced by Common Criteria.

 

×:Red Book

Wrong, as it is a U.S. government publication that addresses the topic of security evaluation of networks and network components. Formally titled Trusted Network Interpretation, it provides a framework for protecting different types of networks. Subjects accessing objects on the network must be controlled, monitored, and audited.

 

×:Orange Book

Incorrect as this is a U.S. Government publication that addresses government and military requirements and expectations for operating systems. The Orange Book is used to evaluate whether a product is suitable for the security characteristics and specific applications or functions required by the vendor. The Orange Book is used to review the functionality, effectiveness, and assurance of the product under evaluation, using classes designed to address typical patterns of security requirements. It provides a broad framework for building and evaluating trusted systems, with an emphasis on controlling which users have access to the system. We call it the Orange Book, but another name for it is Trusted Computer System Evaluation Criteria (TCSEC).

#2. Which of the following problems are caused by the hash collision phenomenon?

A collision is when the hash value of two different data from one hash function is the same. Hashing is one-way cryptography, which means that the original plaintext is no longer known to be one or the other.

#3. Which of the following is an incorrect description of steganography?

〇:The most common method used is to change the most significant bit.

Steganography is a method of hiding data in other media types. One of the most common ways to embed messages in some types of media is using the least significant bit (LSB). This is because many types of files are modified and this is where sensitive data can be made visible and hidden without modifying the file. the LSB approach has been successful in hiding information within the graphics of high-resolution or sound-heavy audio files (high bit rate).

 

×:Hiding by abstraction.

Steganography is incorrect because it is concealment by abstraction. Security by obscurity means that someone uses secrecy as a way to protect an asset, rather than actually using the measure to secure something.

 

×:Just as encryption does, steganography is not a front for the existence of the sensitive data itself.

It is true that steganography does not draw attention to itself as does encryption. In other words, it is concealment by abstraction.

 

×:Media files are ideal for steganographic transmissions that are large in size.

This is incorrect because it is true that larger media files are ideal for steganographic transmissions because everyone needs to privately use multiple bits to manipulate with low likelihood of noticing.

#4. Which is the difference between public key cryptography and public key infrastructure?

〇:Public key infrastructure is a mechanism configuration for public key cryptographic distribution, and public key cryptography is another name for asymmetric encryption.

Public key cryptography is asymmetric cryptography. The terms are used interchangeably. Public key cryptography is a concept within the Public Key Infrastructure (PKI), which consists of various parts such as Certificate Authorities, Registration Authorities, certificates, keys, programs, and users. Public Key Infrastructure is used to identify and create users, distribute and maintain certificates, revoke and distribute certificates, maintain encryption keys, and for the purpose of encrypted communication and authentication.

 

×:Public key infrastructure uses symmetric algorithms and public key cryptography uses asymmetric algorithms.

This is incorrect because the public key infrastructure uses a hybrid system of symmetric and asymmetric key algorithms and methods. Public key cryptography is to use asymmetric algorithms. Therefore, asymmetric and public key cryptography are interchangeable, meaning they are the same. Examples of asymmetric algorithms are RSA, elliptic curve cryptography (ECC), Diffie-Hellman, and El Gamal.

 

×:Public key infrastructure is used to perform key exchange, while public key cryptography is used to create public/private key pairs.

This is incorrect because public key cryptography is the use of asymmetric algorithms used to create public/private key pairs, perform key exchange, and generate and verify digital signatures.

 

×:Public key infrastructure provides confidentiality and integrity, while public key cryptography provides authentication and non-repudiation.

Incorrect because the public key infrastructure itself does not provide authentication, non-repudiation, confidentiality, or integrity.

#5. Sally is responsible for managing the keys in her organization. Which of the following is incorrect as secure key management?

〇:The expiration date should be set short.

Key management is critical for proper protection. Part of key management is to determine the key’s period of validity, which would be determined by the sensitivity of the data being protected. For sensitive data, periodic key changes are required and the key’s expiration date will be shortened. On the other hand, for less secure data, a key with a longer expiration date is not a problem.

 

×:Keys should be deposited in case of backup or emergency.

This is incorrect because it is true that keys must be deposited in the event of a backup or emergency situation. Keys are at risk of being lost, destroyed or damaged. Backup copies must be available and readily accessible when needed.

 

×:Keys must not be made public.

Of course. It is a key.

 

×:Keys should be stored and transmitted by secure means.

Wrong, since it is true that keys should be stored and transmitted by secure means. Keys are stored before and after distribution. If keys are distributed to users, they must be stored in a secure location in the file system and used in a controlled manner.

#6. Which of the following is the most difficult to discover keys among known-plaintext attacks, selective-plaintext attacks, and adaptive-selective-plaintext attacks?

〇:Known Plaintext Attacks

A known-plaintext attack is a situation in which a decryptor can obtain plaintext indiscriminately. A ciphertext-alone attack is a situation where a decryptor can acquire ciphertext indiscriminately. A known-plaintext attack acquires the plaintext but does not know what ciphertext it is paired with, meaning that decryption is attempted with only two random ciphertexts. In this situation, it is difficult to decrypt. Therefore, the correct answer is “known-plaintext attack.

 

×:Selective Plaintext Attack

A choice-plaintext attack is a situation in which the decryptor can freely choose the plaintext to acquire and obtain the ciphertext.

 

×:Adaptive Choice Plaintext Attack

An adaptive choice-plaintext attack is a situation in which the decryptor can freely choose which plaintext to acquire and acquire the ciphertext, and can repeat the acquisition again after seeing the result.

 

×:None of the above

It is rare for the answer to be “none of the above” when the choice is “most of the above.

#7. Mandy needs to generate keys for 260 employees using the company’s asymmetric algorithm. How many keys will be needed?

In an asymmetric algorithm, every user must have at least one key pair (private and public key). In a public key system, each entity has a separate key. The formula for determining the number of keys needed in this environment is by the number N × 2, where N is the number of people to distribute. In other words, 260 x 2 = 520. Therefore, the correct answer is 520.

#8. What are the advantages of depositing cryptographic keys with another organization?

A key escrow system is one in which a third-party organization holds a copy of the public/private key pair. If the private key is stolen, all ciphers can be decrypted. Conversely, if it is lost, all ciphers cannot be decrypted. Therefore, you want to have a copy. However, if you have it yourself, it may be stolen if a break-in occurs, so you leave it with a third-party organization.

#9. It appears that this organization is abusing its authority. Which approach would clarify the what, how, where, who, when, and why of each ex officio?

〇:Zachman Framework

The Zachman Framework is an enterprise architecture that determines the what, how, where, who, when, and why for each mandate. Enterprise architecture is to create a management structure to achieve business goals. We create an organization to achieve business goals, and basically, the larger the business goals, the larger the organization. If the structure of the organization is not in place, the organization will not run efficiently, as there may be residual work that needs to be done, or there may be friction between jobs due to authority that is covered by others. Therefore, it is necessary to clarify the scope of each job authority in order to put the organization in order. The job authority here is different from the perspectives of human resources or sales. It is easier to think of them as hierarchically separated to achieve business goals. Clarify the scope in Executive, Business Management, Architecture, Engineers, Subcontractors, and Stakeholders, respectively. Therefore, the correct answer is the Zachman Framework.

 

×:SABSA

SABSA (Sherwood Applied Business Security Architecture) is a framework to ensure that security measures are working properly in achieving business goals. Unlike the Zachman Framework, the tasks to be organized are hierarchical elements. Business Requirements > Conceptual Architecture > Logical Service Architecture > Physical Infrastructure Architecture > Technology and Products, each with a 5W1H practice.

 

×:Five-W method

There is no such term. If there is, it is a term coined to make it easier to interpret.

 

×:Biba Model

The Biba model is a security model that indicates that data cannot be changed without permission.

#10. Which of the following is a drawback of the symmetric key system?

〇:Keys will need to be distributed via a secure transmission channel.

For two users to exchange messages encrypted with a symmetric algorithm, they need to figure out how to distribute the key first. If the key is compromised, all messages encrypted with that key can be decrypted and read by an intruder. Simply sending the key in an email message is not secure because the key is not protected and can easily be intercepted and used by an attacker.

 

×:Computation is more intensive than in asymmetric systems.

That is incorrect because it describes the advantages of symmetric algorithms. Symmetric algorithms tend to be very fast because they are less computationally intensive than asymmetric algorithms. They can encrypt and decrypt relatively quickly large amounts of data that take an unacceptable amount of time to encrypt and decrypt with asymmetric algorithms.

 

×:Much faster operation than asymmetric systems

Symmetric algorithms are faster than asymmetric systems, but this is an advantage. Therefore, it is incorrect.

 

×:Mathematically intensive tasks must be performed

Asymmetric algorithms are wrong because they perform a mathematically intensive task. Symmetric algorithms, on the other hand, perform relatively simple mathematical functions on bits during the encryption and decryption process.

#11. Elliptic curve cryptography is an asymmetric algorithm. What are its advantages over other asymmetric algorithms?

〇:Encryption and decryption are more efficient.

Elliptic curves are rich mathematical structures that have shown usefulness in many different types of applications. Elliptic curve cryptography (ECC) differs from other asymmetric algorithms because of its efficiency; ECC is efficient because it is computationally less expensive than other asymmetric algorithms. In most cases, the longer the key, the more bloated the computation to secure it, but ECC can provide the same level of protection with a shorter key size than RSA requires.

 

×:Provides digital signatures, secure key distribution, and encryption.

ECC is wrong because it is not the only asymmetric algorithm that provides digital signatures, secure key distribution, and encryption provided by other asymmetric algorithms such as RSA.

 

×:Calculated in finite discrete logarithms.

Wrong because Diffie-Hellman and El-Gamal compute with finite discrete logarithms.

 

×:Uses a large percentage of resources to perform the encryption.

Incorrect because ECC when compared to other asymmetric algorithms uses much less resources. Some devices, such as wireless devices and cell phones, have limited processing power, storage, power, and bandwidth. Resource utilization efficiency is very important for the encryption methods used in this type.

#12. Sally has performed software analysis against her company’s proprietary applications. She has found that it is possible to force an authentication step to take place before the attacker has successfully completed the authentication procedure. What could be the cause?

〇:Conflict condition

A race condition is present when a process performs a task on a shared resource and the sequence could be in the wrong order. 2 or more processes can have a race condition if they use a shared resource, like data in a variable. It is important that processes perform their functions in the correct sequence.

 

×:Backdoors

Backdoors are incorrect because they are “listening” services on certain ports. Backdoors are implemented by attackers to allow easy access to the system without authenticating as a normal system user.

 

×:Maintenance Hooks

Maintenance hooks are specific software codes that allow easy and unauthorized access to sensitive parts of a software product. Software programmers use maintenance hooks to allow them to get quick access to the code so that they can make fixes in immediate, but this is dangerous.

 

×:Data validation errors

Data validation errors are wrong because an attacker cannot operate on the process execution sequence.

#13. The CA is responsible for revoking the required certificates. Which of the following adequately describes CRLs and OCSPs?

〇:OCSP is a protocol developed specifically to check CRLs during the certificate validation process.

A Certificate Authority (CA) is responsible for creating certificates, maintaining and distributing them, and revoking them when necessary. Revocation is handled by the CA and the revoked certificate information is stored in a Certificate Revocation List (CRL). This is a list of all revoked certificates. This list is maintained and updated periodically. A certificate is revoked if the key owner’s private key has been compromised, if the CA has been compromised, or if the certificate is incorrect. If a certificate is revoked for any reason, the CRL is a mechanism for others to inform you of this information. The Online Certificate Status Protocol (OCSP) uses this CRL; when using CRLs, the user’s browser must examine the CRL value to the client to see if the accreditation has been revoked or the CA is constantly checking to make sure they have an updated CRL. If OCSP is implemented, it will do this automatically in the background. It performs real-time verification of the certificate and reports back to the user whether the certificate is valid, invalid, or unknown.

 

×:CRL was developed as a more efficient approach to OCSP.

CRLs are often incorrect because they are a cumbersome approach; OCSP is used to deal with this tediousness; OCSP does this work in the background when using CRLs; OCSP checks the CRL to see if the certificate has been revoked by Checks.

 

×:OCSP is a protocol for submitting revoked certificates to CRLs.

OCSP is incorrect because it does not submit revoked certificates to the CRL; the CA is responsible for certificate creation, distribution, and maintenance.

 

×:CRL provides real-time validation of certificates and reports to OCSP.

Incorrect because CRL does not provide real-time validation of certificates to OCSP.

#14. Which security architecture model defines how to securely develop access rights between subjects and objects?

〇:Graham-Denning Model

The Graham-Denning model addresses how access rights between subjects and objects are defined, developed, and integrated. It defines a basic set of rights in terms of the commands that a particular subject can execute on an object. The model has eight basic protective rights or rules on how to safely perform these types of functions

 

×:Brewer-Nash Model

It is incorrect because its purpose is to provide access control that can be changed dynamically according to the user’s previous actions. The main purpose is to protect against conflicts of interest due to user access attempts. For example, if a large marketing firm provides marketing promotions and materials for two banks, the employee responsible for the Bank A project should not be able to see information about Bank B, the marketing firm’s other bank customer. A conflict of interest could arise because the banks are competitors. If the project manager of the marketing firm’s Project A can see information about Bank B’s new marketing campaign, he may attempt to execute it rather than promote it to please more direct customers. Marketing firms have a bad reputation when internal employees can act irresponsibly.

 

×:Clark-Wilson Model

The Clark-Wilson model is incorrect because it is implemented to protect data integrity and ensure that transactions are properly formatted within the application. Subjects can only access objects through authorized programs. Segregation of duties is enforced. Auditing is required. The Clark-Wilson model addresses three integrity goals: preventing changes by unauthorized users, preventing inappropriate changes by unauthorized users, and maintaining internal and external consistency.

 

×:Bell-LaPadula Model

This model was developed to address concerns about the security of U.S. military systems and the leakage of classified information, and is incorrect. The primary goal of the model is to prevent unauthorized access to classified information. It is a state machine model that enforces the confidentiality aspect of access control. Matrices and security levels are used to determine if a subject has access to different objects. Specific rules are applied to control how objects interact with each other compared to the subject’s object classification.

#15. Insider trading can occur through the unintentional transmission of information. Which of the following access control models is most appropriate to prepare for such an eventuality?

〇:Brewer-Nash Model

The Chinese Wall Model is a security model that focuses on the flow of information within an organization, such as insider trading. Insider trading occurs when inside information leaks to the outside world. In reality, information can spread to unexpected places as it is passed on orally to unrelated parties. In order to take such information flow into account, access privileges are determined in a simulation-like manner. Therefore, the correct answer is the “Chinese Wall Model (Brewer-Nash Model).

 

×:Lattice-based Access Control

Lattice-based access control is to assume that a single entity can have multiple access rights and to consider access control as all possible relationships under a certain condition.

 

×:Biba Model

The Biba model is a security model that indicates that data cannot be changed without permission.

 

×:Harrison-Ruzzo-Ullman Model

The Harrison-Ruzzo-Ullman model is a model that aggregates the eight rules of the Graham-Denning model into six rules using an access control matrix.

#16. What is the AES algorithm used for?

〇:Data Encryption

The Advanced Encryption Standard (AES) is a data encryption standard developed to improve upon the previous de facto standard, Data Encryption Standard (DES). As a symmetric algorithm, AES is used to encrypt data. Therefore, the correct answer is “data encryption.

There are other situations where AES is used in the other choices, but encrypting data is the most focused or better answer. Thus, there are cases where all of the choices are correct.

 

×:Data integrity

This is a characteristic of digital signatures.

 

×:Key recovery

It is a property of decryption and key escrow.

 

×:Symmetric key distribution

Using symmetric keys for AES distribution lowers the key delivery problem.

#17. The Trusted Computing Base (TCB) ensures security within the system when a process in one domain needs to access another domain to obtain sensitive information. What functions does the TCB perform to ensure this is done in a secure manner?

〇:Execution Domain Switching

Execution domain switching occurs when the CPU needs to move between executing instructions for a more trusted process versus a less trusted process. Trusted Computing Base (TCB) allows processes to switch domains in a secure manner to access different levels of information based on sensitivity. Execution domain switching occurs when a process needs to invoke a process in a higher protection ring. The CPU executes the user-mode instruction back into privileged mode.

At first glance, this is a geeky problem that does not make sense. But don’t give up. Since there is no such thing as skipping, you can only get a right or wrong answer when the question is posed, so it is preferable to answer the question with some degree of prediction.

From this point on, let’s consider how to answer the questions. If you look at the question text and read it to the point where it reads, “You moved from one area to the other, and that was a security breach?” If you can read to that point, then you have two choices: deny or “stop the process,” or change or “switch the domain of execution. Next, the question text reads “if you need to access it,” which is asking how to accomplish this objective, not whether or not you should.

 

×:Execution of I/O operations

This is incorrect because input/output (I/O) operations are not initiated to ensure security when a process in one domain needs to access another domain in order to retrieve sensitive information. I/O operations are performed when input devices (such as a mouse or keyboard) and output devices (such as a monitor or printer, etc.) interact with an application or applications.

 

×:Stopping a Process

A process deactivation is one that occurs when a process instruction is fully executed by the CPU or when another process with a higher priority calls the CPU, which is incorrect. When a process is deactivated, new information about the new requesting process must be written to a register in the CPU. The TCB component must ensure that this is done, since the data replaced in the registers may be confidential.

 

×:Mapping from virtual memory to real memory

Incorrect because memory mapping occurs when a process needs its instructions and data processed by the CPU. The memory manager maps logical addresses to physical addresses so that the CPU knows where to place the data. This is the responsibility of the operating system’s memory manager.

#18. We are looking to move to a cloud-based solution to eliminate the increasing cost of maintaining our own server network environment. Which of the following is the correct definition and mapping of a typical cloud-based solution to choose?

〇:The cloud provider is provided a platform as a service that provides a computing platform that may include an operating system, database, and web servers.

Cloud computing is a term used to describe the aggregation of network and server technologies, each virtualized, to provide customers with a specific computing environment that matches their needs. This centralized control provides end users with self-service, broad access across multiple devices, resource pooling, rapid elasticity, and service monitoring capabilities.

There are different types of cloud computing products: IaaS provides virtualized servers in the cloud; PaaS allows applications to be developed individually; SaaS allows service providers to deploy services with no development required and with a choice of functionality; and IaaS allows customers to choose the type of service they want to use. ” The term “PaaS” must fit the definition of “PaaS” because it requires that “the original application configuration remains the same”. Thus, the correct answer is, “The cloud provider provides a computing platform that may include an operating system, database, and web server, where the platform as a service is provided.” The following is the correct answer

 

×:The cloud provider is provided with an infrastructure as a service that provides a computing platform that can include an operating system, database, and web servers.

IaaS Description.

 

×:The cloud provider is provided with software services that provide an infrastructure environment similar to that of a traditional data center.

This is a description of the operational benefits of cloud computing. It is not a definition.

 

×:The cloud provider provides software as a service in a computing platform environment where application functionality is internalized.

SaaS Description.

#19. Which of the following comes closest to defining a virtual machine?

〇:A virtual instance of an operating system
A virtual machine is a virtual instance of an operating system. A virtual machine, also called a guest, runs in a host environment. Multiple guests can run simultaneously in the host environment. Virtual machines pool resources such as RAM, processors, and storage from the host environment. This has many benefits, including increased processing efficiency. Other benefits include the ability to run legacy applications. For example, an organization may choose to run legacy applications on Windows 7 instances (virtual machines) after Windows 7 is rolled out.
×:Hardware running multiple operating system environments simultaneously.
This is incorrect because virtual machines are not hardware. A virtual machine is an instance of an operating system running on hardware. A host can run multiple virtual machines. That is, you can have essentially one computer running different operating systems simultaneously. With virtual machines, the workloads of several unused servers can be consolidated into one host, saving hardware and administrative management efforts.
×:Physical environment for multiple guests
Incorrect because the virtual machine serves and functions within a software emulation. The host provides resources such as memory, processors, buses, RAM, and storage for the virtual machines. Virtual machines share these resources, but do not have direct access to them. The host environment, which is responsible for managing system resources, acts as an intermediary between the resources and the virtual machines.
×:Environments with full access to legacy applications
Many legacy applications are incorrect because they are not compatible with certain hardware and newer operating systems. As a result, applications generally do not fully utilize server software and components. Virtual machines emulate an environment that allows legacy applications and other applications to fully utilize available resources. This is the reason for using virtual machines, but the benefits and definitions are different.

#20. Which microprocessor technology has also been linked to facilitating certain attacks?

〇:Increased Processing Power

The increased processing power of personal computers and servers has increased the probability of successful brute force and cracking attacks against security mechanisms that were not feasible a few years ago. Today’s processors can execute an incredible number of instructions per second. These instructions can be used to break passwords, encryption keys, or direct malicious packets to be sent to the victim’s system.

 

×:Increased circuitry, cache memory, and multiprogramming

This is incorrect because an increase does not make a particular type of attack more powerful. Multiprogramming means loading multiple programs or processes into memory at the same time. It allows antivirus software, word processors, firewalls, and e-mail clients to run simultaneously. Cache memory is a type of memory used for fast write and read operations. If the system expects that the program logic will need to access certain information many times during processing, the information is stored in cache memory for easy and quick access.

 

×:Dual-mode computation

The answer is not specific and does not measure conformance to the problem. When examining microprocessor advances, there is no actual dual-mode calculation.

 

×:Direct Memory Access I/O

Incorrect because this method transfers instructions and data between I/O (input/output) devices and the system’s memory without using the CPU. Direct Memory Access I/O significantly increases data transfer speed.

終了