Practice Test(DOMAIN3)

CISSP総合学習サイト

Domain 3 Exam.

A minimum of 70% is required to pass.

 

Results

Wonderful!

There may be content you haven’t seen yet.

#1. Several steps must be taken before an effective physical security program can be rolled out. Which of the following steps comes first in the process of rolling out a security program?

〇:Conduct a risk analysis.

The first step in the procedure described, which is the first step to be taken only to deploy an effective physical security program, is to conduct a risk analysis to identify vulnerabilities and threats and to calculate the business impact of each threat. The team presents the results of the risk analysis to management to define an acceptable risk level for the physical security program. From there, the team evaluates and determines if the baseline is met by implementation. Once the team identifies its responses and implements the measures, performance is continually evaluated. These performances will be compared to the established baselines. If the baseline is maintained on an ongoing basis, the security program is successful because it does not exceed the company’s acceptable risk level.

 

×:Create a performance metric for the countermeasure.  

The procedure to create a countermeasure performance metric is incorrect because it is not the first step in creating a physical security program. If monitored on a performance basis, it can be used to determine how beneficial and effective the program is. It allows management to make business decisions when investing in physical security protection for the organization. The goal is to improve the performance of the physical security program, leading to a cost-effective way to reduce the company’s risk. You should establish a performance baseline and then continually evaluate performance to ensure that the firm’s protection goals are being met. Examples of possible performance metrics include: number of successful attacks, number of successful attacks, and time taken for attacks.

 

×:Design program.  

Designing the program is wrong because it should be done after the risk analysis. Once the level of risk is understood, then the design phase can be done to protect against the threats identified in the risk analysis. The design of deterrents, delays, detections, assessments, and responses will incorporate the necessary controls for each category of the program.

 

×:Implement countermeasures.  

Wrong because implementing countermeasures is one of the last steps in the process of deploying a physical security program.

#2. Virtual storage combines RAM for system memory and secondary storage. Which of the following is a security concern regarding virtual storage?

〇:Multiple processes are using the same resources.

The system uses hard drive space (called swap space) that is reserved to expand RAM memory space. When the system fills up volatile memory space, data is written from memory to the hard drive. When a program requests access to this data, it is returned from the hard drive to memory in specific units called page frames. Accessing data stored on hard drive pages takes longer than accessing data stored in memory because it requires read/write access to the physical disk. A security issue with using virtual swap space is that two or more processes can use the same resources and corrupt or damage data.

 

×:Allowing cookies to remain persistent in memory

This is incorrect because virtual storage is not associated with cookies. Virtual storage uses hard drive space to extend RAM memory space. Cookies are small text files used primarily by web browsers. Cookies can contain credentials for web sites, site preferences, and shopping history. Cookies are also commonly used to maintain web server-based sessions.

 

×:Side-channel attacks are possible.

Side-channel attacks are incorrect because they are physical attacks. This type of attack gathers information about how a mechanism (e.g., smart card or encryption processor) works from abandoned radiation, time spent processing, power consumed to perform a task, etc. Using the information, reverse engineer the mechanism to reveal how it performs its security task. This is not related to virtual storage.

 

×:Two processes can perform a denial of service attack.

The biggest threat within a system where resources are shared between processes is that one process can adversely affect the resources of another process, since the operating system requires memory to be shared among all resources. This is especially true in the case of memory. It is possible for two processes to work together to perform a denial of service attack, but this is only one of the attacks that can be performed with or without the use of virtual storage.

#3. Which of the following best describes the difference between a firewall embedded in a hypervisor and a virtual firewall operating in bridge mode?

〇:A virtual firewall in bridge mode allows the firewall to monitor individual traffic links, while a firewall integrated into the hypervisor can monitor all activity taking place within the host system.

Virtual firewalls can be bridge-mode products that monitor individual communication links between virtual machines. They can also be integrated within a hypervisor in a virtual environment. The hypervisor is the software component that manages the virtual machines and monitors the execution of guest system software. When a firewall is embedded within the hypervisor, it can monitor all activities that occur within the host system.

 

×:A virtual firewall in bridge mode allows the firewall to monitor individual network links, while a firewall integrated into the hypervisor can monitor all activities taking place within the guest system.

A virtual firewall in bridge mode is incorrect because the firewall can monitor individual traffic links between hosts and not network links. Hypervisor integration allows the firewall to monitor all activities taking place within the guest system rather than the host system.

 

×:A virtual firewall in bridge mode allows the firewall to monitor individual traffic links, while a firewall integrated into the hypervisor can monitor all activities taking place within the guest system.

A virtual firewall in bridge mode is wrong because the firewall can monitor individual traffic links, and the hypervisor integration allows the firewall to monitor all activity taking place within the host system, but not the guest system. The hypervisor is the software component that manages the virtual machines and monitors the execution of the guest system software. A firewall, when embedded within the hypervisor, can monitor all activities taking place within the system.

 

×:A virtual firewall in bridge mode allows the firewall to monitor individual guest systems, while a firewall integrated into the hypervisor can monitor all activities taking place within the network system.

A virtual firewall in bridge mode allows the firewall to monitor individual traffic between guest systems, and a hypervisor integrated allows the firewall to monitor all activity taking place within the host system, not the network system, so Wrong.

#4. Which of the following is true about the key derivation function (KDF)?

〇:Keys are generated from a master key.

To generate a composite key, a master key is created and a symmetric key (subkey) is generated. The key derivation function generates the encryption key from the secret value. The secret value can be a master key, passphrase, or password. The key derivation function (KDF) generates a key for symmetric key ciphers from a given password.

 

×:Session keys are generated from each other.

Session keys are generated from each other, not from the master key, which is incorrect.

 

×:Asymmetric ciphers are used to encrypt symmetric keys.

It is incorrect because key encryption is not even related to the key derivation function (KDF).

 

×:The master key is generated from the session key.

Reverse, incorrect. Session keys are generally generated from master keys.

#5. Which of the following correctly describes the relationship between the reference monitor and the security kernel?

〇:The security kernel implements and executes the reference monitor

The Trusted Computing Base (TCB) is a complete combination of protection mechanisms for a system. These are in the form of hardware, software, and firmware. These same components also comprise the security kernel. Reference monitors are access control concepts implemented and enforced by the security kernel via hardware, software, and firmware. In doing so, it ensures that the security kernel, the subject, has the proper permissions to access the object it is requesting. The subject, be it a program, user, or process, cannot access the requesting file, program, or resource until it is proven that it has the proper access rights.

 

×:The reference monitor is the core of the Trusted Computing Base (TCP), which is comprised of the security kernel.

This is incorrect because the reference monitor is not the core of the TCB. The core of the TCB is the security kernel, and the security kernel implements the concepts of the reference monitor. The reference monitor is a concept about access control. It is often referred to as an “abstract machine” because it is not a physical component.

 

×:The reference monitor implements and executes the security kernel.

The reference monitor does not implement and execute the security kernel, which is incorrect. On the contrary, the security kernel implements and executes the reference monitor. The reference monitor is an abstract concept, while the security kernel is a combination of hardware, software, and firmware in a trusted computing base.

 

×:The security kernel, i.e., the abstract machine, implements the concept of a reference monitor.

This is incorrect because abstract machine is not another name for security kernel. Abstract machine is another name for the reference monitor. This concept ensures that the abstract machine acts as an intermediary between the subject and the object, ensuring that the subject has the necessary rights to access the object it is requesting and protecting the subject from unauthorized access and modification. The security kernel functions to perform these activities.

#6. Which of the following events occurs in a PKI environment?

〇:CA signs certificates.

A Certificate Authority (CA) is a trusted agency (or server) that maintains digital certificates. When a certificate is requested, the Registration Authority (RA) verifies the identity of the individual and passes the certificate request to the CA The CA creates the certificate, signs it, and maintains the certificate over its lifetime.

 

×:RA creates the certificate and CA signs it.

Incorrect because the RA does not create the certificate; the CA creates it and signs it; the RA performs authentication and registration tasks; establishes the RA, verifies the identity of the individual requesting the certificate, initiates the authentication process to the CA on behalf of the end user, and performs certificate life cycle RAs cannot issue certificates, but can act as a broker between the user and the CA When a user needs a new certificate, they make a request to the RA and the RA goes to the CA to verify all necessary identification before granting the request The RA verifies all necessary identification information before granting the request.

 

×:RA signs certificates.

The RA signs the certificate, which is incorrect because the RA does not sign the certificate; the CA signs the certificate; the RA verifies the user’s identifying information and then sends the certificate request to the CA.

 

×:The user signs the certificate.

Incorrect because the user has not signed the certificate; in a PKI environment, the user’s certificate is created and signed by the CA. The CA is a trusted third party that generates the user certificate holding its public key.

#7. Mandy needs to generate keys for 260 employees using the company’s asymmetric algorithm. How many keys will be needed?

In an asymmetric algorithm, every user must have at least one key pair (private and public key). In a public key system, each entity has a separate key. The formula for determining the number of keys needed in this environment is by the number N × 2, where N is the number of people to distribute. In other words, 260 x 2 = 520. Therefore, the correct answer is 520.

#8. Which of the following comes closest to defining a virtual machine?

〇:A virtual instance of an operating system
A virtual machine is a virtual instance of an operating system. A virtual machine, also called a guest, runs in a host environment. Multiple guests can run simultaneously in the host environment. Virtual machines pool resources such as RAM, processors, and storage from the host environment. This has many benefits, including increased processing efficiency. Other benefits include the ability to run legacy applications. For example, an organization may choose to run legacy applications on Windows 7 instances (virtual machines) after Windows 7 is rolled out.
×:Hardware running multiple operating system environments simultaneously.
This is incorrect because virtual machines are not hardware. A virtual machine is an instance of an operating system running on hardware. A host can run multiple virtual machines. That is, you can have essentially one computer running different operating systems simultaneously. With virtual machines, the workloads of several unused servers can be consolidated into one host, saving hardware and administrative management efforts.
×:Physical environment for multiple guests
Incorrect because the virtual machine serves and functions within a software emulation. The host provides resources such as memory, processors, buses, RAM, and storage for the virtual machines. Virtual machines share these resources, but do not have direct access to them. The host environment, which is responsible for managing system resources, acts as an intermediary between the resources and the virtual machines.
×:Environments with full access to legacy applications
Many legacy applications are incorrect because they are not compatible with certain hardware and newer operating systems. As a result, applications generally do not fully utilize server software and components. Virtual machines emulate an environment that allows legacy applications and other applications to fully utilize available resources. This is the reason for using virtual machines, but the benefits and definitions are different.

#9. It appears that this organization is abusing its authority. Which approach would clarify the what, how, where, who, when, and why of each ex officio?

〇:Zachman Framework

The Zachman Framework is an enterprise architecture that determines the what, how, where, who, when, and why for each mandate. Enterprise architecture is to create a management structure to achieve business goals. We create an organization to achieve business goals, and basically, the larger the business goals, the larger the organization. If the structure of the organization is not in place, the organization will not run efficiently, as there may be residual work that needs to be done, or there may be friction between jobs due to authority that is covered by others. Therefore, it is necessary to clarify the scope of each job authority in order to put the organization in order. The job authority here is different from the perspectives of human resources or sales. It is easier to think of them as hierarchically separated to achieve business goals. Clarify the scope in Executive, Business Management, Architecture, Engineers, Subcontractors, and Stakeholders, respectively. Therefore, the correct answer is the Zachman Framework.

 

×:SABSA

SABSA (Sherwood Applied Business Security Architecture) is a framework to ensure that security measures are working properly in achieving business goals. Unlike the Zachman Framework, the tasks to be organized are hierarchical elements. Business Requirements > Conceptual Architecture > Logical Service Architecture > Physical Infrastructure Architecture > Technology and Products, each with a 5W1H practice.

 

×:Five-W method

There is no such term. If there is, it is a term coined to make it easier to interpret.

 

×:Biba Model

The Biba model is a security model that indicates that data cannot be changed without permission.

#10. Which is the difference between public key cryptography and public key infrastructure?

〇:Public key infrastructure is a mechanism configuration for public key cryptographic distribution, and public key cryptography is another name for asymmetric encryption.

Public key cryptography is asymmetric cryptography. The terms are used interchangeably. Public key cryptography is a concept within the Public Key Infrastructure (PKI), which consists of various parts such as Certificate Authorities, Registration Authorities, certificates, keys, programs, and users. Public Key Infrastructure is used to identify and create users, distribute and maintain certificates, revoke and distribute certificates, maintain encryption keys, and for the purpose of encrypted communication and authentication.

 

×:Public key infrastructure uses symmetric algorithms and public key cryptography uses asymmetric algorithms.

This is incorrect because the public key infrastructure uses a hybrid system of symmetric and asymmetric key algorithms and methods. Public key cryptography is to use asymmetric algorithms. Therefore, asymmetric and public key cryptography are interchangeable, meaning they are the same. Examples of asymmetric algorithms are RSA, elliptic curve cryptography (ECC), Diffie-Hellman, and El Gamal.

 

×:Public key infrastructure is used to perform key exchange, while public key cryptography is used to create public/private key pairs.

This is incorrect because public key cryptography is the use of asymmetric algorithms used to create public/private key pairs, perform key exchange, and generate and verify digital signatures.

 

×:Public key infrastructure provides confidentiality and integrity, while public key cryptography provides authentication and non-repudiation.

Incorrect because the public key infrastructure itself does not provide authentication, non-repudiation, confidentiality, or integrity.

#11. Which microprocessor technology has also been linked to facilitating certain attacks?

〇:Increased Processing Power

The increased processing power of personal computers and servers has increased the probability of successful brute force and cracking attacks against security mechanisms that were not feasible a few years ago. Today’s processors can execute an incredible number of instructions per second. These instructions can be used to break passwords, encryption keys, or direct malicious packets to be sent to the victim’s system.

 

×:Increased circuitry, cache memory, and multiprogramming

This is incorrect because an increase does not make a particular type of attack more powerful. Multiprogramming means loading multiple programs or processes into memory at the same time. It allows antivirus software, word processors, firewalls, and e-mail clients to run simultaneously. Cache memory is a type of memory used for fast write and read operations. If the system expects that the program logic will need to access certain information many times during processing, the information is stored in cache memory for easy and quick access.

 

×:Dual-mode computation

The answer is not specific and does not measure conformance to the problem. When examining microprocessor advances, there is no actual dual-mode calculation.

 

×:Direct Memory Access I/O

Incorrect because this method transfers instructions and data between I/O (input/output) devices and the system’s memory without using the CPU. Direct Memory Access I/O significantly increases data transfer speed.

#12. Which of the following is an incorrect description of steganography?

〇:The most common method used is to change the most significant bit.

Steganography is a method of hiding data in other media types. One of the most common ways to embed messages in some types of media is using the least significant bit (LSB). This is because many types of files are modified and this is where sensitive data can be made visible and hidden without modifying the file. the LSB approach has been successful in hiding information within the graphics of high-resolution or sound-heavy audio files (high bit rate).

 

×:Hiding by abstraction.

Steganography is incorrect because it is concealment by abstraction. Security by obscurity means that someone uses secrecy as a way to protect an asset, rather than actually using the measure to secure something.

 

×:Just as encryption does, steganography is not a front for the existence of the sensitive data itself.

It is true that steganography does not draw attention to itself as does encryption. In other words, it is concealment by abstraction.

 

×:Media files are ideal for steganographic transmissions that are large in size.

This is incorrect because it is true that larger media files are ideal for steganographic transmissions because everyone needs to privately use multiple bits to manipulate with low likelihood of noticing.

#13. Which of the following is the most difficult to discover keys among known-plaintext attacks, selective-plaintext attacks, and adaptive-selective-plaintext attacks?

〇:Known Plaintext Attacks

A known-plaintext attack is a situation in which a decryptor can obtain plaintext indiscriminately. A ciphertext-alone attack is a situation where a decryptor can acquire ciphertext indiscriminately. A known-plaintext attack acquires the plaintext but does not know what ciphertext it is paired with, meaning that decryption is attempted with only two random ciphertexts. In this situation, it is difficult to decrypt. Therefore, the correct answer is “known-plaintext attack.

 

×:Selective Plaintext Attack

A choice-plaintext attack is a situation in which the decryptor can freely choose the plaintext to acquire and obtain the ciphertext.

 

×:Adaptive Choice Plaintext Attack

An adaptive choice-plaintext attack is a situation in which the decryptor can freely choose which plaintext to acquire and acquire the ciphertext, and can repeat the acquisition again after seeing the result.

 

×:None of the above

It is rare for the answer to be “none of the above” when the choice is “most of the above.

#14. I saw a news report about encryption technology being deciphered by the development of quantum computers. What do you call the phenomenon of existing encryption being deciphered as the computational power of computers improves?

Compromise is when what used to be secure encryption becomes insecure due to the evolution of computers. Cryptography is based on the sharing of a single answer, a key, among those communicating. The key is generated by computer calculations, and a third party must solve a difficult problem that would take several years to derive. However, as the computational power of computers has evolved, it is now possible to solve difficult problems that could not be solved before. In this case, encryption is meaningless. This is the compromise caused by evolution. Therefore, the correct answer is “Compromise.

#15. Similar to logical access control, audit logs should also be generated and monitored for physical access control. Which of the following statements is true regarding auditing physical access?

〇:All failed access attempts should be logged and reviewed.

The physical access control system may use software and auditing capabilities to generate an audit trail or access log associated with access attempts. The date and time of the entry point when access was attempted, the user ID used when access was attempted, and any failed access attempts, among others, should be recorded.

 

×:Failed access attempts are recorded and only security personnel are entitled to review them.

Unless someone actually reviews them, the access logs are as useless as the audit logs generated by the computer. Security guards should review these logs, but security professionals and facility managers should review these logs on a regular basis. The administrator must know the existence and location of entry points into the facility.

 

×:Only successful access attempts should be logged and reviewed.

Wrong, as unsuccessful access attempts should be logged and reviewed. Audit should be able to alert you to suspicious activity even though you are denying an entity access to a network, computer, or location.

 

×:Failed access attempts outside of business hours should be logged and reviewed.

Incorrect, as all unauthorized access attempts should be logged and reviewed regardless. Unauthorized access can occur at any time.

#16. Which of the following is a drawback of the symmetric key system?

〇:Keys will need to be distributed via a secure transmission channel.

For two users to exchange messages encrypted with a symmetric algorithm, they need to figure out how to distribute the key first. If the key is compromised, all messages encrypted with that key can be decrypted and read by an intruder. Simply sending the key in an email message is not secure because the key is not protected and can easily be intercepted and used by an attacker.

 

×:Computation is more intensive than in asymmetric systems.

That is incorrect because it describes the advantages of symmetric algorithms. Symmetric algorithms tend to be very fast because they are less computationally intensive than asymmetric algorithms. They can encrypt and decrypt relatively quickly large amounts of data that take an unacceptable amount of time to encrypt and decrypt with asymmetric algorithms.

 

×:Much faster operation than asymmetric systems

Symmetric algorithms are faster than asymmetric systems, but this is an advantage. Therefore, it is incorrect.

 

×:Mathematically intensive tasks must be performed

Asymmetric algorithms are wrong because they perform a mathematically intensive task. Symmetric algorithms, on the other hand, perform relatively simple mathematical functions on bits during the encryption and decryption process.

#17. Which of the following problems are caused by the hash collision phenomenon?

A collision is when the hash value of two different data from one hash function is the same. Hashing is one-way cryptography, which means that the original plaintext is no longer known to be one or the other.

#18. Frank is responsible for the security of the company’s online applications, web server, and web-based activities. Web applications have the ability to be dynamically “locked” so that multiple users cannot simultaneously edit web pages or overwrite each other’s work. The audit revealed that even with this software locking capability properly configured, multiple users can modify the same web page at the same time. Which of the following best describes this situation?

〇:TOC/TOU

Certain attacks can take advantage of the way a system processes requests and performs tasks. A TOC/TOU attack handles a series of steps that the system uses to complete a task. This type of attack takes advantage of the reliance on the timing of events occurring in a multitasking operating system; TOC/TOU is a software vulnerability that allows the use of condition checking (i.e., credential verification) and the results from that condition checking function. In the scenario in this question, the fact that the web application is likely correctly configured indicates that the programming code of this application has this type of vulnerability embedded in the code itself.

 

×:Buffer overflow

When too much data is accepted as input to a particular process, a buffer overflow occurs. This is incorrect because it does not match the event in the problem statement. A buffer is an allocated segment of memory. A buffer can overflow arbitrarily with too much data, but to be used by an attacker, the code inserted into the buffer must be of a specific length and require a command to be executed by the attacker. These types of attacks are usually exceptional in that the fault is segmented, or sensitive data is provided to the attacker.

 

×:Blind SQL Injection

Blind SQL injection attacks are wrong because they are a type of SQL injection attack that sends true or false questions to the database. In a basic SQL injection, the attacker sends specific instructions in SQL format to query the associated database. In a blind SQL attack, the attacker is limited to sending a series of true-false questions to the database in order to analyze the database responses and gather sensitive information.

 

×:Cross Site Request Forgery (CSRF)

Cross Site Request Forgery (CSRF) is incorrect because it is an attack type that attempts to trick the victim into loading a web page containing malicious requests or operations. The attack operation is performed within the context of the victim’s access rights. The request inherits the victim’s identity and performs undesirable functions for the victim. In this type of attack, the attacker can cause the victim’s system to perform unintended actions such as changing account information, retrieving account data, or logging out. This type of attack could be related to the scenario described in this question, but focuses on how the user can bypass the locking mechanism built into the web application. The logic in the programming code is incorrectly developed and the locking function is bypassed because a rigorous series of checks and usage sequences are not performed correctly.

#19. Which of the following is an axiom of access control to ensure that rewriting a supervisor’s document does not release incorrect information to the supervisor?

〇:* (star) Integrity Property

The Biba model defines a model with completeness as having two axioms. The * (star) Integrity Property is that the subordinate’s document is to be seen and there is no Read Down. The * (star) Integrity Property is that there is no Write Up, that is, no rewriting of the supervisor’s document. If the Simple Integrity Axiom is not followed, the subordinate’s document will be seen and may absorb unclassified and incorrect information at a lower level. If the * (star) Integrity Property is not followed, a supervisor’s document will be rewritten, which will release incorrect information to the supervisor who sees it. Therefore, both are integrity conditions.

 

×:Simple Integrity Property

The Simple Integrity Property is a constraint on Read Down.

 

×:Strong Tranquillity Axiom

The Strong Tranquillity Axiom is the constraint not to change permissions while the system is running.

 

×:Weak Tranquillity Axiom

Weak Tranquillity Axiom means do not change privileges until the attribute is inconsistent.

#20. What should I use for streaming ciphers?

〇:One-time pad

Stream ciphers refer to one-time pad technology. In practice, stream ciphers cannot provide the level of protection that one-time pads do, but are practical.

 

×:AES

AES is incorrect because it is a symmetric block cipher. When a block cipher is used for encryption and decryption purposes, the message is divided into blocks of bits.

 

×:Block ciphers

Block ciphers are used for encryption and decryption purposes. The message is wrong because it is divided into blocks of bits.

 

×:RSA

RSA is incorrect because it is an asymmetric algorithm.

Previous
終了