Practice Test(DOMAIN3)

CISSP総合学習サイト

Domain 3 Exam.

A minimum of 70% is required to pass.

 

Results

Wonderful!

There may be content you haven’t seen yet.

#1. Which of the following events occurs in a PKI environment?

〇:CA signs certificates.

A Certificate Authority (CA) is a trusted agency (or server) that maintains digital certificates. When a certificate is requested, the Registration Authority (RA) verifies the identity of the individual and passes the certificate request to the CA The CA creates the certificate, signs it, and maintains the certificate over its lifetime.

 

×:RA creates the certificate and CA signs it.

Incorrect because the RA does not create the certificate; the CA creates it and signs it; the RA performs authentication and registration tasks; establishes the RA, verifies the identity of the individual requesting the certificate, initiates the authentication process to the CA on behalf of the end user, and performs certificate life cycle RAs cannot issue certificates, but can act as a broker between the user and the CA When a user needs a new certificate, they make a request to the RA and the RA goes to the CA to verify all necessary identification before granting the request The RA verifies all necessary identification information before granting the request.

 

×:RA signs certificates.

The RA signs the certificate, which is incorrect because the RA does not sign the certificate; the CA signs the certificate; the RA verifies the user’s identifying information and then sends the certificate request to the CA.

 

×:The user signs the certificate.

Incorrect because the user has not signed the certificate; in a PKI environment, the user’s certificate is created and signed by the CA. The CA is a trusted third party that generates the user certificate holding its public key.

#2. Mandy needs to generate keys for 260 employees using the company’s asymmetric algorithm. How many keys will be needed?

In an asymmetric algorithm, every user must have at least one key pair (private and public key). In a public key system, each entity has a separate key. The formula for determining the number of keys needed in this environment is by the number N × 2, where N is the number of people to distribute. In other words, 260 x 2 = 520. Therefore, the correct answer is 520.

#3. Which is the difference between public key cryptography and public key infrastructure?

〇:Public key infrastructure is a mechanism configuration for public key cryptographic distribution, and public key cryptography is another name for asymmetric encryption.

Public key cryptography is asymmetric cryptography. The terms are used interchangeably. Public key cryptography is a concept within the Public Key Infrastructure (PKI), which consists of various parts such as Certificate Authorities, Registration Authorities, certificates, keys, programs, and users. Public Key Infrastructure is used to identify and create users, distribute and maintain certificates, revoke and distribute certificates, maintain encryption keys, and for the purpose of encrypted communication and authentication.

 

×:Public key infrastructure uses symmetric algorithms and public key cryptography uses asymmetric algorithms.

This is incorrect because the public key infrastructure uses a hybrid system of symmetric and asymmetric key algorithms and methods. Public key cryptography is to use asymmetric algorithms. Therefore, asymmetric and public key cryptography are interchangeable, meaning they are the same. Examples of asymmetric algorithms are RSA, elliptic curve cryptography (ECC), Diffie-Hellman, and El Gamal.

 

×:Public key infrastructure is used to perform key exchange, while public key cryptography is used to create public/private key pairs.

This is incorrect because public key cryptography is the use of asymmetric algorithms used to create public/private key pairs, perform key exchange, and generate and verify digital signatures.

 

×:Public key infrastructure provides confidentiality and integrity, while public key cryptography provides authentication and non-repudiation.

Incorrect because the public key infrastructure itself does not provide authentication, non-repudiation, confidentiality, or integrity.

#4. Which of the following is a common association of the Clark-Wilson access model?

〇:Well-Formed Transaction

In the Clark-Wilson model, subjects cannot access objects without going through some type of application or program that controls how this access is done. The subject (usually the user) can access the required object based on access rules within the application software, defined as “Well-Formed Transaction,” in conjunction with the application.

 

 

×:Childwall model

This is incorrect because it is another name for the Brewer Nash model created to provide access control that can be dynamically modified according to the user’s previous behavior. It is shaped by access attempts and conflicts of interest and does not allow information to flow between subjects and objects. In this model, a subject can only write to an object if the subject cannot read another object in a different data set.

 

×:Access tuples

The Clark-Wilson model is incorrect because it uses access triples instead of access tuples. The access triple is the subject program object. This ensures that the subject can only access the object through the authorized program.

 

×:Write Up and Write Down

The Clark-Wilson model is incorrect because there is no Write Up and Write Down. These rules relate to the Bell-LaPadula and Biba models. The Bell-LaPadula model contains a simple security rule that has not been read and a star property rule that has not been written down. The Biba model contains an unread simple completeness axiom and an unwritten star completeness axiom.

#5. What are the advantages of depositing cryptographic keys with another organization?

A key escrow system is one in which a third-party organization holds a copy of the public/private key pair. If the private key is stolen, all ciphers can be decrypted. Conversely, if it is lost, all ciphers cannot be decrypted. Therefore, you want to have a copy. However, if you have it yourself, it may be stolen if a break-in occurs, so you leave it with a third-party organization.

#6. You have been instructed to report to the Board of Directors with a vendor-neutral enterprise architecture framework that will help reduce fragmentation due to inconsistencies between IT and business processes. Which of the following frameworks should you propose?

〇:TOGAF

The Open Group Architecture Framework (TOGAF) is a vendor-independent platform for the development and implementation of enterprise architecture. It focuses on the effective management of enterprise data using metamodels and service-oriented architectures (SOA). Proficient implementations of TOGAF aim to reduce fragmentation caused by inconsistencies between traditional IT systems and actual business processes. It also coordinates new changes and functionality so that new changes can be easily integrated into the enterprise platform.

 

×:Department of Defense Architecture Framework (DoDAF)

In accordance with the guidelines for the organization of the enterprise architecture of the U.S. Department of Defense systems, this is incorrect. It is also suitable for large, complex integrated systems in the military, civilian, and public sectors.

 

×:Capability Maturity Model Integration (CMMI) during software development.

It is inappropriate because it is a framework for the purpose of designing and further improving software. CMMI provides a standard for software development processes that can measure the maturity of the development process.

 

×:ISO/IEC 42010

Incorrect because it consists of recommended practices to simplify the design and conception of software-intensive system architectures. This standard provides a kind of language (terminology) to describe the different components of software architecture and how to integrate it into the development life cycle.

#7. Encryption provides different security depending on the procedure and & algorithm. Which of the following provides authentication, non-repudiation, and integrity?

〇:Digital Signature

A digital signature is a hash value encrypted with the sender’s private key. The act of signing means encrypting a hash value of a message with a private key. A message can be digitally signed, providing authentication, non-repudiation, and integrity. The hash function guarantees the integrity of the message, and the signature of the hash value provides authentication and non-repudiation.

 

×:Encryption Algorithms

Encryption algorithms are wrong because they provide confidentiality. Encryption is most commonly performed using symmetric algorithms. Symmetric algorithms can provide authentication, non-repudiation, and integrity as well as confidentiality.

 

×:Hash Algorithms

Hash algorithms are wrong because they provide data integrity. Hash algorithms generate a message digest, which detects whether modifications have been made (also called a hash value). The sender and receiver individually generate their own digests, and the receiver compares these values. If they differ, the receiver can know the message has been modified. Hash algorithms cannot provide authentication or non-repudiation.

 

×:Encryption paired with digital signatures

This is incorrect because encryption and digital signatures provide confidentiality, authentication, non-repudiation, and integrity. Encryption alone provides confidentiality. And digital signatures provide authentication, non-repudiation, and integrity. The question requires that it can provide authentication, non-repudiation, and integrity. It is a nasty question.

#8. Virtual storage combines RAM for system memory and secondary storage. Which of the following is a security concern regarding virtual storage?

〇:Multiple processes are using the same resources.

The system uses hard drive space (called swap space) that is reserved to expand RAM memory space. When the system fills up volatile memory space, data is written from memory to the hard drive. When a program requests access to this data, it is returned from the hard drive to memory in specific units called page frames. Accessing data stored on hard drive pages takes longer than accessing data stored in memory because it requires read/write access to the physical disk. A security issue with using virtual swap space is that two or more processes can use the same resources and corrupt or damage data.

 

×:Allowing cookies to remain persistent in memory

This is incorrect because virtual storage is not associated with cookies. Virtual storage uses hard drive space to extend RAM memory space. Cookies are small text files used primarily by web browsers. Cookies can contain credentials for web sites, site preferences, and shopping history. Cookies are also commonly used to maintain web server-based sessions.

 

×:Side-channel attacks are possible.

Side-channel attacks are incorrect because they are physical attacks. This type of attack gathers information about how a mechanism (e.g., smart card or encryption processor) works from abandoned radiation, time spent processing, power consumed to perform a task, etc. Using the information, reverse engineer the mechanism to reveal how it performs its security task. This is not related to virtual storage.

 

×:Two processes can perform a denial of service attack.

The biggest threat within a system where resources are shared between processes is that one process can adversely affect the resources of another process, since the operating system requires memory to be shared among all resources. This is especially true in the case of memory. It is possible for two processes to work together to perform a denial of service attack, but this is only one of the attacks that can be performed with or without the use of virtual storage.

#9. Which microprocessor technology has also been linked to facilitating certain attacks?

〇:Increased Processing Power

The increased processing power of personal computers and servers has increased the probability of successful brute force and cracking attacks against security mechanisms that were not feasible a few years ago. Today’s processors can execute an incredible number of instructions per second. These instructions can be used to break passwords, encryption keys, or direct malicious packets to be sent to the victim’s system.

 

×:Increased circuitry, cache memory, and multiprogramming

This is incorrect because an increase does not make a particular type of attack more powerful. Multiprogramming means loading multiple programs or processes into memory at the same time. It allows antivirus software, word processors, firewalls, and e-mail clients to run simultaneously. Cache memory is a type of memory used for fast write and read operations. If the system expects that the program logic will need to access certain information many times during processing, the information is stored in cache memory for easy and quick access.

 

×:Dual-mode computation

The answer is not specific and does not measure conformance to the problem. When examining microprocessor advances, there is no actual dual-mode calculation.

 

×:Direct Memory Access I/O

Incorrect because this method transfers instructions and data between I/O (input/output) devices and the system’s memory without using the CPU. Direct Memory Access I/O significantly increases data transfer speed.

#10. Which of the following problems are caused by the hash collision phenomenon?

A collision is when the hash value of two different data from one hash function is the same. Hashing is one-way cryptography, which means that the original plaintext is no longer known to be one or the other.

#11. Symmetric ciphers include stream ciphers and block ciphers. Which of the following is not a suitable characteristic of stream ciphers?

〇:Statistically predictable

The two main types of symmetric algorithms are block ciphers and stream ciphers. Block ciphers perform a mathematical function on a block of bits at a time. Stream ciphers do not divide the message into blocks. Instead, a stream cipher treats the message as a stream of bits and performs the mathematical function on each bit individually. If it were statistically predictable, it would not be a practical encryption technique in the first place.

 

×:Statistically Fair Keystreams

Statistically fair keystreams are an element of good stream ciphers. Therefore, it is incorrect. Another way to say a statistically unbiased keystream is that it is a highly random keystream that is difficult to predict.

 

×:The repetitive pattern of bit strings treated in a keystream is long.

Another way to say the randomness of a keystream is that it is highly random, with long repetitions = rarely repeated = highly random.

 

×:The keystream is irrelevant to the key.

A keystream that is not related to a key is an element of a good stream cipher. Therefore, it is incorrect. This is important because the key provides the randomness of the encryption process.

#12. David is preparing the server room for the new branch office. He wants to know what locking mechanism should be used for the primary and secondary server room entry doors?

〇:Primary entry doors should have controlled access via swipe card or cryptographic locks. Secondary doors should not be secured from the inside and allowed entry. 

Data centers, server rooms, and wiring closets should be located in the core areas of the facility, near wiring distribution centers. Strict access control mechanisms and procedures should be implemented for these areas. Access control mechanisms can lock smart card readers, biometric readers, or a combination of these. These restricted areas should have only one access door, but fire code requirements typically dictate that there must be at least two doors in most data centers and server rooms. Only one door should be used for daily entry and exit and the other door should be used only in case of an emergency, i.e., if a fire breaks out in a data center or server room, the door should be locked. This second door should not be an access door, meaning people should not be able to come through this door. It should be locked, but should have a panic bar that will release the lock if it is used as an exit, pushed from the inside.

 

×:The primary and secondary entry doors must have control access via swipe cards or cryptographic locks.  

This is incorrect because even two entry doors should not be allowed to pass through with the identification, authentication, and authorization process. There should only be one entry point into the server room. No other door should provide an entry point, but can be used for an emergency exit. Therefore, secondary doors should be protected from the inside to prevent intrusion.

 

×:The primary entry door should have controlled access via a guard. Two doors should not be secured from the inside and allowed entry.

The main entry door to the server room is incorrect as it requires an identification, authentication, and authorization process to be performed. Swipe cards and cryptographic locks perform these functions. Server rooms should ideally not be directly accessible from public areas such as stairways, hallways, loading docks, elevators, and restrooms. This helps prevent foot traffic from casual passersby. Those who are by the door to the area to be secured should have a legitimate reason for being there, as opposed to those on the way to the meeting room, for example.

 

×:The main entry door must have controlled access via swipe card or crypto lock. Two doors must have security guards.  

Two doors should not have security guards, because it is wrong. The door should be protected from the inside simply so it cannot be used as an entry. Two-door must function as an emergency exit.

#13. Which of the following is true about the key derivation function (KDF)?

〇:Keys are generated from a master key.

To generate a composite key, a master key is created and a symmetric key (subkey) is generated. The key derivation function generates the encryption key from the secret value. The secret value can be a master key, passphrase, or password. The key derivation function (KDF) generates a key for symmetric key ciphers from a given password.

 

×:Session keys are generated from each other.

Session keys are generated from each other, not from the master key, which is incorrect.

 

×:Asymmetric ciphers are used to encrypt symmetric keys.

It is incorrect because key encryption is not even related to the key derivation function (KDF).

 

×:The master key is generated from the session key.

Reverse, incorrect. Session keys are generally generated from master keys.

#14. Several steps must be taken before an effective physical security program can be rolled out. Which of the following steps comes first in the process of rolling out a security program?

〇:Conduct a risk analysis.

The first step in the procedure described, which is the first step to be taken only to deploy an effective physical security program, is to conduct a risk analysis to identify vulnerabilities and threats and to calculate the business impact of each threat. The team presents the results of the risk analysis to management to define an acceptable risk level for the physical security program. From there, the team evaluates and determines if the baseline is met by implementation. Once the team identifies its responses and implements the measures, performance is continually evaluated. These performances will be compared to the established baselines. If the baseline is maintained on an ongoing basis, the security program is successful because it does not exceed the company’s acceptable risk level.

 

×:Create a performance metric for the countermeasure.  

The procedure to create a countermeasure performance metric is incorrect because it is not the first step in creating a physical security program. If monitored on a performance basis, it can be used to determine how beneficial and effective the program is. It allows management to make business decisions when investing in physical security protection for the organization. The goal is to improve the performance of the physical security program, leading to a cost-effective way to reduce the company’s risk. You should establish a performance baseline and then continually evaluate performance to ensure that the firm’s protection goals are being met. Examples of possible performance metrics include: number of successful attacks, number of successful attacks, and time taken for attacks.

 

×:Design program.  

Designing the program is wrong because it should be done after the risk analysis. Once the level of risk is understood, then the design phase can be done to protect against the threats identified in the risk analysis. The design of deterrents, delays, detections, assessments, and responses will incorporate the necessary controls for each category of the program.

 

×:Implement countermeasures.  

Wrong because implementing countermeasures is one of the last steps in the process of deploying a physical security program.

#15. Which of the following is an axiom of access control to ensure that rewriting a supervisor’s document does not release incorrect information to the supervisor?

〇:* (star) Integrity Property

The Biba model defines a model with completeness as having two axioms. The * (star) Integrity Property is that the subordinate’s document is to be seen and there is no Read Down. The * (star) Integrity Property is that there is no Write Up, that is, no rewriting of the supervisor’s document. If the Simple Integrity Axiom is not followed, the subordinate’s document will be seen and may absorb unclassified and incorrect information at a lower level. If the * (star) Integrity Property is not followed, a supervisor’s document will be rewritten, which will release incorrect information to the supervisor who sees it. Therefore, both are integrity conditions.

 

×:Simple Integrity Property

The Simple Integrity Property is a constraint on Read Down.

 

×:Strong Tranquillity Axiom

The Strong Tranquillity Axiom is the constraint not to change permissions while the system is running.

 

×:Weak Tranquillity Axiom

Weak Tranquillity Axiom means do not change privileges until the attribute is inconsistent.

#16. The Trusted Computing Base (TCB) ensures security within the system when a process in one domain needs to access another domain to obtain sensitive information. What functions does the TCB perform to ensure this is done in a secure manner?

〇:Execution Domain Switching

Execution domain switching occurs when the CPU needs to move between executing instructions for a more trusted process versus a less trusted process. Trusted Computing Base (TCB) allows processes to switch domains in a secure manner to access different levels of information based on sensitivity. Execution domain switching occurs when a process needs to invoke a process in a higher protection ring. The CPU executes the user-mode instruction back into privileged mode.

At first glance, this is a geeky problem that does not make sense. But don’t give up. Since there is no such thing as skipping, you can only get a right or wrong answer when the question is posed, so it is preferable to answer the question with some degree of prediction.

From this point on, let’s consider how to answer the questions. If you look at the question text and read it to the point where it reads, “You moved from one area to the other, and that was a security breach?” If you can read to that point, then you have two choices: deny or “stop the process,” or change or “switch the domain of execution. Next, the question text reads “if you need to access it,” which is asking how to accomplish this objective, not whether or not you should.

 

×:Execution of I/O operations

This is incorrect because input/output (I/O) operations are not initiated to ensure security when a process in one domain needs to access another domain in order to retrieve sensitive information. I/O operations are performed when input devices (such as a mouse or keyboard) and output devices (such as a monitor or printer, etc.) interact with an application or applications.

 

×:Stopping a Process

A process deactivation is one that occurs when a process instruction is fully executed by the CPU or when another process with a higher priority calls the CPU, which is incorrect. When a process is deactivated, new information about the new requesting process must be written to a register in the CPU. The TCB component must ensure that this is done, since the data replaced in the registers may be confidential.

 

×:Mapping from virtual memory to real memory

Incorrect because memory mapping occurs when a process needs its instructions and data processed by the CPU. The memory manager maps logical addresses to physical addresses so that the CPU knows where to place the data. This is the responsibility of the operating system’s memory manager.

#17. Which security architecture model defines how to securely develop access rights between subjects and objects?

〇:Graham-Denning Model

The Graham-Denning model addresses how access rights between subjects and objects are defined, developed, and integrated. It defines a basic set of rights in terms of the commands that a particular subject can execute on an object. The model has eight basic protective rights or rules on how to safely perform these types of functions

 

×:Brewer-Nash Model

It is incorrect because its purpose is to provide access control that can be changed dynamically according to the user’s previous actions. The main purpose is to protect against conflicts of interest due to user access attempts. For example, if a large marketing firm provides marketing promotions and materials for two banks, the employee responsible for the Bank A project should not be able to see information about Bank B, the marketing firm’s other bank customer. A conflict of interest could arise because the banks are competitors. If the project manager of the marketing firm’s Project A can see information about Bank B’s new marketing campaign, he may attempt to execute it rather than promote it to please more direct customers. Marketing firms have a bad reputation when internal employees can act irresponsibly.

 

×:Clark-Wilson Model

The Clark-Wilson model is incorrect because it is implemented to protect data integrity and ensure that transactions are properly formatted within the application. Subjects can only access objects through authorized programs. Segregation of duties is enforced. Auditing is required. The Clark-Wilson model addresses three integrity goals: preventing changes by unauthorized users, preventing inappropriate changes by unauthorized users, and maintaining internal and external consistency.

 

×:Bell-LaPadula Model

This model was developed to address concerns about the security of U.S. military systems and the leakage of classified information, and is incorrect. The primary goal of the model is to prevent unauthorized access to classified information. It is a state machine model that enforces the confidentiality aspect of access control. Matrices and security levels are used to determine if a subject has access to different objects. Specific rules are applied to control how objects interact with each other compared to the subject’s object classification.

#18. Which of the following physical environment designs combines sociology to reduce crime rates and fear of crime?

〇:Crime Prevention by Environmental Design (CPTED)

Crime Prevention by Environmental Design (CPTED) is a method by which crime can be reduced through proper design of the physical environment. It provides guidance on appropriate facility construction and environmental elements and crime prevention. It is used to guide the physical environment to behavioral effects that reduce crime.

 

×:Multi-layered defense model  

The multi-layered defense model is incorrect because it is a hierarchical architecture of physical, logical, and administrative security controls. The concept is that if one layer fails, the asset is protected by other layers. Layers should be moved from the perimeter toward the asset and implemented.

 

×:Hiding by Ambiguity

Concealment by ambiguity is a technique of concealment secured by concealment of information and is incorrect. Basically, it is better not to consider something to be a true secret if it is logically reachable, even if it is not public.

 

×:Access Control

Access control is incorrect because it is guidance by the placement of doors, fences, lighting, and landscaping as people enter. It is an abstract concept and would not fit into a concrete definition that combines sociology.

#19. Insider trading can occur through the unintentional transmission of information. Which of the following access control models is most appropriate to prepare for such an eventuality?

〇:Brewer-Nash Model

The Chinese Wall Model is a security model that focuses on the flow of information within an organization, such as insider trading. Insider trading occurs when inside information leaks to the outside world. In reality, information can spread to unexpected places as it is passed on orally to unrelated parties. In order to take such information flow into account, access privileges are determined in a simulation-like manner. Therefore, the correct answer is the “Chinese Wall Model (Brewer-Nash Model).

 

×:Lattice-based Access Control

Lattice-based access control is to assume that a single entity can have multiple access rights and to consider access control as all possible relationships under a certain condition.

 

×:Biba Model

The Biba model is a security model that indicates that data cannot be changed without permission.

 

×:Harrison-Ruzzo-Ullman Model

The Harrison-Ruzzo-Ullman model is a model that aggregates the eight rules of the Graham-Denning model into six rules using an access control matrix.

#20. What is the AES algorithm used for?

〇:Data Encryption

The Advanced Encryption Standard (AES) is a data encryption standard developed to improve upon the previous de facto standard, Data Encryption Standard (DES). As a symmetric algorithm, AES is used to encrypt data. Therefore, the correct answer is “data encryption.

There are other situations where AES is used in the other choices, but encrypting data is the most focused or better answer. Thus, there are cases where all of the choices are correct.

 

×:Data integrity

This is a characteristic of digital signatures.

 

×:Key recovery

It is a property of decryption and key escrow.

 

×:Symmetric key distribution

Using symmetric keys for AES distribution lowers the key delivery problem.

Previous
終了