Domain 3 Exam.
A minimum of 70% is required to pass.
#1. Encryption provides different security depending on the procedure and & algorithm. Which of the following provides authentication, non-repudiation, and integrity?
〇:Digital Signature
A digital signature is a hash value encrypted with the sender’s private key. The act of signing means encrypting a hash value of a message with a private key. A message can be digitally signed, providing authentication, non-repudiation, and integrity. The hash function guarantees the integrity of the message, and the signature of the hash value provides authentication and non-repudiation.
×:Encryption Algorithms
Encryption algorithms are wrong because they provide confidentiality. Encryption is most commonly performed using symmetric algorithms. Symmetric algorithms can provide authentication, non-repudiation, and integrity as well as confidentiality.
×:Hash Algorithms
Hash algorithms are wrong because they provide data integrity. Hash algorithms generate a message digest, which detects whether modifications have been made (also called a hash value). The sender and receiver individually generate their own digests, and the receiver compares these values. If they differ, the receiver can know the message has been modified. Hash algorithms cannot provide authentication or non-repudiation.
×:Encryption paired with digital signatures
This is incorrect because encryption and digital signatures provide confidentiality, authentication, non-repudiation, and integrity. Encryption alone provides confidentiality. And digital signatures provide authentication, non-repudiation, and integrity. The question requires that it can provide authentication, non-repudiation, and integrity. It is a nasty question.
#2. Which is the difference between public key cryptography and public key infrastructure?
〇:Public key infrastructure is a mechanism configuration for public key cryptographic distribution, and public key cryptography is another name for asymmetric encryption.
Public key cryptography is asymmetric cryptography. The terms are used interchangeably. Public key cryptography is a concept within the Public Key Infrastructure (PKI), which consists of various parts such as Certificate Authorities, Registration Authorities, certificates, keys, programs, and users. Public Key Infrastructure is used to identify and create users, distribute and maintain certificates, revoke and distribute certificates, maintain encryption keys, and for the purpose of encrypted communication and authentication.
×:Public key infrastructure uses symmetric algorithms and public key cryptography uses asymmetric algorithms.
This is incorrect because the public key infrastructure uses a hybrid system of symmetric and asymmetric key algorithms and methods. Public key cryptography is to use asymmetric algorithms. Therefore, asymmetric and public key cryptography are interchangeable, meaning they are the same. Examples of asymmetric algorithms are RSA, elliptic curve cryptography (ECC), Diffie-Hellman, and El Gamal.
×:Public key infrastructure is used to perform key exchange, while public key cryptography is used to create public/private key pairs.
This is incorrect because public key cryptography is the use of asymmetric algorithms used to create public/private key pairs, perform key exchange, and generate and verify digital signatures.
×:Public key infrastructure provides confidentiality and integrity, while public key cryptography provides authentication and non-repudiation.
Incorrect because the public key infrastructure itself does not provide authentication, non-repudiation, confidentiality, or integrity.
#3. Which of the following is an axiom of access control to ensure that rewriting a supervisor’s document does not release incorrect information to the supervisor?
〇:* (star) Integrity Property
The Biba model defines a model with completeness as having two axioms. The * (star) Integrity Property is that the subordinate’s document is to be seen and there is no Read Down. The * (star) Integrity Property is that there is no Write Up, that is, no rewriting of the supervisor’s document. If the Simple Integrity Axiom is not followed, the subordinate’s document will be seen and may absorb unclassified and incorrect information at a lower level. If the * (star) Integrity Property is not followed, a supervisor’s document will be rewritten, which will release incorrect information to the supervisor who sees it. Therefore, both are integrity conditions.
×:Simple Integrity Property
The Simple Integrity Property is a constraint on Read Down.
×:Strong Tranquillity Axiom
The Strong Tranquillity Axiom is the constraint not to change permissions while the system is running.
×:Weak Tranquillity Axiom
Weak Tranquillity Axiom means do not change privileges until the attribute is inconsistent.
#4. According to the Kerckhoffs’s principle, which of the following should not leak?
The Kerckhoffs’s principle is the idea that cryptography should be secure even if everything but the private key is known. When encrypting data, one decides on a private key and how to encrypt it using that private key. Kerckhoffs says that even if it is known how it is encrypted, it should not be deciphered as long as the secret key is not discovered. Encryption has been with the history of human warfare. The main purpose is to communicate a strategy to one’s allies without being discovered by the enemy. In battle, its designs and encryption devices may be stolen by spies. Therefore, the encryption must be such that it cannot be solved without the key, no matter how much is known about how it works.
#5. Jeff would like to incorporate encryption technology into the new product. He is considering encryption methods available on the Internet. What advice should we give him?
Cryptographic algorithms refer to the calculations to be encrypted, and even if the cryptographic algorithms were publicly available, it would take an enormous amount of effort to decipher them. cryptographic algorithms that provide modern cryptography, such as AES, are publicly available. On the other hand, in-house development is not recommended because, although it has the security of concealment, it requires a great deal of resources to be allocated.
#6. Insider trading can occur through the unintentional transmission of information. Which of the following access control models is most appropriate to prepare for such an eventuality?
〇:Brewer-Nash Model
The Chinese Wall Model is a security model that focuses on the flow of information within an organization, such as insider trading. Insider trading occurs when inside information leaks to the outside world. In reality, information can spread to unexpected places as it is passed on orally to unrelated parties. In order to take such information flow into account, access privileges are determined in a simulation-like manner. Therefore, the correct answer is the “Chinese Wall Model (Brewer-Nash Model).
×:Lattice-based Access Control
Lattice-based access control is to assume that a single entity can have multiple access rights and to consider access control as all possible relationships under a certain condition.
×:Biba Model
The Biba model is a security model that indicates that data cannot be changed without permission.
×:Harrison-Ruzzo-Ullman Model
The Harrison-Ruzzo-Ullman model is a model that aggregates the eight rules of the Graham-Denning model into six rules using an access control matrix.
#7. We are looking to move to a cloud-based solution to eliminate the increasing cost of maintaining our own server network environment. Which of the following is the correct definition and mapping of a typical cloud-based solution to choose?
〇:The cloud provider is provided a platform as a service that provides a computing platform that may include an operating system, database, and web servers.
Cloud computing is a term used to describe the aggregation of network and server technologies, each virtualized, to provide customers with a specific computing environment that matches their needs. This centralized control provides end users with self-service, broad access across multiple devices, resource pooling, rapid elasticity, and service monitoring capabilities.
There are different types of cloud computing products: IaaS provides virtualized servers in the cloud; PaaS allows applications to be developed individually; SaaS allows service providers to deploy services with no development required and with a choice of functionality; and IaaS allows customers to choose the type of service they want to use. ” The term “PaaS” must fit the definition of “PaaS” because it requires that “the original application configuration remains the same”. Thus, the correct answer is, “The cloud provider provides a computing platform that may include an operating system, database, and web server, where the platform as a service is provided.” The following is the correct answer
×:The cloud provider is provided with an infrastructure as a service that provides a computing platform that can include an operating system, database, and web servers.
IaaS Description.
×:The cloud provider is provided with software services that provide an infrastructure environment similar to that of a traditional data center.
This is a description of the operational benefits of cloud computing. It is not a definition.
×:The cloud provider provides software as a service in a computing platform environment where application functionality is internalized.
SaaS Description.
#8. Lacy’s manager assigned her to research intrusion detection systems for the new dispatching center. Lacey identifies the top five products and compares their ratings. Which of the following is the most used evaluation criteria framework today for this purpose?
〇:Common Criteria
Common Criteria was created in the early 1990s as a way to combine the strengths of both the Trustworthy Computer Systems Evaluation Criteria (TCSEC) and the Information Technology Security Evaluation Criteria (ITSEC) and eliminate their weaknesses. Common Criteria is more flexible than TCSEC and easier than ITSEC. Common Criteria is recognized worldwide and assists consumers by reducing the complexity of assessments and eliminating the need to understand the definitions and meanings of different assessments in different assessment schemes. This also helps manufacturers because they can now build a specific set of requirements when they want to market their products internationally, rather than having to meet several different evaluation criteria under different rules and requirements.
×:ITSEC
This is incorrect because it is not the most widely used information technology security evaluation standard. ITSEC was the first attempt to establish a single standard for evaluating the security attributes of computer systems and products in many European countries. In addition, ITSEC separates functionality and assurance in its evaluations, giving each a separate rating. It was developed to provide greater flexibility than TCSEC and addresses integrity, availability, and confidentiality in networked systems. The goal of ITSEC was to become the global standard for product evaluation, but it failed to achieve that goal and was replaced by Common Criteria.
×:Red Book
Wrong, as it is a U.S. government publication that addresses the topic of security evaluation of networks and network components. Formally titled Trusted Network Interpretation, it provides a framework for protecting different types of networks. Subjects accessing objects on the network must be controlled, monitored, and audited.
×:Orange Book
Incorrect as this is a U.S. Government publication that addresses government and military requirements and expectations for operating systems. The Orange Book is used to evaluate whether a product is suitable for the security characteristics and specific applications or functions required by the vendor. The Orange Book is used to review the functionality, effectiveness, and assurance of the product under evaluation, using classes designed to address typical patterns of security requirements. It provides a broad framework for building and evaluating trusted systems, with an emphasis on controlling which users have access to the system. We call it the Orange Book, but another name for it is Trusted Computer System Evaluation Criteria (TCSEC).
#9. Which of the following is the appropriate method of creating a digital signature?
〇:The sender encrypts the message digest with his/her private key.
A digital signature is a hash value encrypted with the sender’s private key. The act of digitally signing means encrypting the hash value of the message with his/her private key. The sender would encrypt that hash value using her private key. When the recipient receives the message, she performs a hash function on the message and generates the hash value herself. She then decrypts the hash value (digital signature) sent with the sender’s public key. The receiver compares the two values and, if they are the same, can verify that the message was not altered during transmission.
×:The sender encrypts the message digest with his/her public key.
The sender is wrong because if the message encrypts the digest with his/her public key, the recipient cannot decrypt it. The recipient needs access to the sender’s private key, which must not occur. The private key must always be kept secret.
×:The receiver encrypts the message digest with his/her private key.
The receiver is wrong because the message must decrypt the digest with the sender’s public key. The message digest is encrypted with the sender’s private key, which can only be decrypted with the sender’s public key.
×:The receiver encrypts the message digest with his/her public key.
The receiver is wrong because the message must decrypt the digest with the sender’s public key. The message digest is encrypted with the sender’s private key, which can only be decrypted with the sender’s public key.
#10. You have been instructed to report to the Board of Directors with a vendor-neutral enterprise architecture framework that will help reduce fragmentation due to inconsistencies between IT and business processes. Which of the following frameworks should you propose?
〇:TOGAF
The Open Group Architecture Framework (TOGAF) is a vendor-independent platform for the development and implementation of enterprise architecture. It focuses on the effective management of enterprise data using metamodels and service-oriented architectures (SOA). Proficient implementations of TOGAF aim to reduce fragmentation caused by inconsistencies between traditional IT systems and actual business processes. It also coordinates new changes and functionality so that new changes can be easily integrated into the enterprise platform.
×:Department of Defense Architecture Framework (DoDAF)
In accordance with the guidelines for the organization of the enterprise architecture of the U.S. Department of Defense systems, this is incorrect. It is also suitable for large, complex integrated systems in the military, civilian, and public sectors.
×:Capability Maturity Model Integration (CMMI) during software development.
It is inappropriate because it is a framework for the purpose of designing and further improving software. CMMI provides a standard for software development processes that can measure the maturity of the development process.
×:ISO/IEC 42010
Incorrect because it consists of recommended practices to simplify the design and conception of software-intensive system architectures. This standard provides a kind of language (terminology) to describe the different components of software architecture and how to integrate it into the development life cycle.
#11. Mandy needs to generate keys for 260 employees using the company’s asymmetric algorithm. How many keys will be needed?
In an asymmetric algorithm, every user must have at least one key pair (private and public key). In a public key system, each entity has a separate key. The formula for determining the number of keys needed in this environment is by the number N × 2, where N is the number of people to distribute. In other words, 260 x 2 = 520. Therefore, the correct answer is 520.
#12. Elliptic curve cryptography is an asymmetric algorithm. What are its advantages over other asymmetric algorithms?
〇:Encryption and decryption are more efficient.
Elliptic curves are rich mathematical structures that have shown usefulness in many different types of applications. Elliptic curve cryptography (ECC) differs from other asymmetric algorithms because of its efficiency; ECC is efficient because it is computationally less expensive than other asymmetric algorithms. In most cases, the longer the key, the more bloated the computation to secure it, but ECC can provide the same level of protection with a shorter key size than RSA requires.
×:Provides digital signatures, secure key distribution, and encryption.
ECC is wrong because it is not the only asymmetric algorithm that provides digital signatures, secure key distribution, and encryption provided by other asymmetric algorithms such as RSA.
×:Calculated in finite discrete logarithms.
Wrong because Diffie-Hellman and El-Gamal compute with finite discrete logarithms.
×:Uses a large percentage of resources to perform the encryption.
Incorrect because ECC when compared to other asymmetric algorithms uses much less resources. Some devices, such as wireless devices and cell phones, have limited processing power, storage, power, and bandwidth. Resource utilization efficiency is very important for the encryption methods used in this type.
#13. Which of the following is NOT a role of the memory manager?
〇:Run an algorithm that identifies unused committed memory and informs the operating system that memory is available.
This answer describes the function of the garbage collector, not the memory manager. The garbage collector is a countermeasure against memory leaks. It is software that runs an algorithm to identify unused committed memory and tells the operating system to mark that memory as “available. Different types of garbage collectors work with different operating systems, programming languages, and algorithms.
In some cases, a four-choice question can be answered without knowing the exact answer; since there is only one correct answer in a four-choice question, the answers can be grouped together to reduce it to “since they are saying the same thing, it is not right that only one of them is correct, therefore they are both wrong.
There are two answers to the effect of controlling the process to handle memory appropriately, but if the memory manager does not have that functionality, both would be correct, and therefore can be eliminated from the choices in the first place.
×:If processes need to use the same shared memory segment, use complex controls to guarantee integrity and confidentiality.
If processes need to use the same shared memory segment, the memory manager uses complex controls to ensure integrity and confidentiality. This is important to protect memory and the data in it, since two or more processes can share access to the same segment with potentially different access rights. The memory manager also allows many users with different levels of access rights to interact with the same application running on a single memory segment.
×:Restrict processes to interact only with the memory segments allocated to them.
The memory manager is responsible for limiting the interaction of processes to only those memory segments allocated to them. This responsibility falls under the protection category and helps prevent processes from accessing segments to which they are not allowed. Another protection responsibility of the memory manager is to provide access control to memory segments.
×:Swap contents from RAM to hard drive as needed.
This is incorrect because swapping contents from RAM to hard drive as needed is the role of memory managers in the relocation category. When RAM and secondary storage are combined, they become virtual memory. The system uses the hard drive space to extend the RAM memory space. Another relocation responsibility is to provide pointers for applications when instructions and memory segments are moved to another location in main memory.
#14. Virtual storage combines RAM for system memory and secondary storage. Which of the following is a security concern regarding virtual storage?
〇:Multiple processes are using the same resources.
The system uses hard drive space (called swap space) that is reserved to expand RAM memory space. When the system fills up volatile memory space, data is written from memory to the hard drive. When a program requests access to this data, it is returned from the hard drive to memory in specific units called page frames. Accessing data stored on hard drive pages takes longer than accessing data stored in memory because it requires read/write access to the physical disk. A security issue with using virtual swap space is that two or more processes can use the same resources and corrupt or damage data.
×:Allowing cookies to remain persistent in memory
This is incorrect because virtual storage is not associated with cookies. Virtual storage uses hard drive space to extend RAM memory space. Cookies are small text files used primarily by web browsers. Cookies can contain credentials for web sites, site preferences, and shopping history. Cookies are also commonly used to maintain web server-based sessions.
×:Side-channel attacks are possible.
Side-channel attacks are incorrect because they are physical attacks. This type of attack gathers information about how a mechanism (e.g., smart card or encryption processor) works from abandoned radiation, time spent processing, power consumed to perform a task, etc. Using the information, reverse engineer the mechanism to reveal how it performs its security task. This is not related to virtual storage.
×:Two processes can perform a denial of service attack.
The biggest threat within a system where resources are shared between processes is that one process can adversely affect the resources of another process, since the operating system requires memory to be shared among all resources. This is especially true in the case of memory. It is possible for two processes to work together to perform a denial of service attack, but this is only one of the attacks that can be performed with or without the use of virtual storage.
#15. Which of the following is the most difficult to discover keys among known-plaintext attacks, selective-plaintext attacks, and adaptive-selective-plaintext attacks?
〇:Known Plaintext Attacks
A known-plaintext attack is a situation in which a decryptor can obtain plaintext indiscriminately. A ciphertext-alone attack is a situation where a decryptor can acquire ciphertext indiscriminately. A known-plaintext attack acquires the plaintext but does not know what ciphertext it is paired with, meaning that decryption is attempted with only two random ciphertexts. In this situation, it is difficult to decrypt. Therefore, the correct answer is “known-plaintext attack.
×:Selective Plaintext Attack
A choice-plaintext attack is a situation in which the decryptor can freely choose the plaintext to acquire and obtain the ciphertext.
×:Adaptive Choice Plaintext Attack
An adaptive choice-plaintext attack is a situation in which the decryptor can freely choose which plaintext to acquire and acquire the ciphertext, and can repeat the acquisition again after seeing the result.
×:None of the above
It is rare for the answer to be “none of the above” when the choice is “most of the above.
#16. Which microprocessor technology has also been linked to facilitating certain attacks?
〇:Increased Processing Power
The increased processing power of personal computers and servers has increased the probability of successful brute force and cracking attacks against security mechanisms that were not feasible a few years ago. Today’s processors can execute an incredible number of instructions per second. These instructions can be used to break passwords, encryption keys, or direct malicious packets to be sent to the victim’s system.
×:Increased circuitry, cache memory, and multiprogramming
This is incorrect because an increase does not make a particular type of attack more powerful. Multiprogramming means loading multiple programs or processes into memory at the same time. It allows antivirus software, word processors, firewalls, and e-mail clients to run simultaneously. Cache memory is a type of memory used for fast write and read operations. If the system expects that the program logic will need to access certain information many times during processing, the information is stored in cache memory for easy and quick access.
×:Dual-mode computation
The answer is not specific and does not measure conformance to the problem. When examining microprocessor advances, there is no actual dual-mode calculation.
×:Direct Memory Access I/O
Incorrect because this method transfers instructions and data between I/O (input/output) devices and the system’s memory without using the CPU. Direct Memory Access I/O significantly increases data transfer speed.
#17. Several steps must be taken before an effective physical security program can be rolled out. Which of the following steps comes first in the process of rolling out a security program?
〇:Conduct a risk analysis.
The first step in the procedure described, which is the first step to be taken only to deploy an effective physical security program, is to conduct a risk analysis to identify vulnerabilities and threats and to calculate the business impact of each threat. The team presents the results of the risk analysis to management to define an acceptable risk level for the physical security program. From there, the team evaluates and determines if the baseline is met by implementation. Once the team identifies its responses and implements the measures, performance is continually evaluated. These performances will be compared to the established baselines. If the baseline is maintained on an ongoing basis, the security program is successful because it does not exceed the company’s acceptable risk level.
×:Create a performance metric for the countermeasure.
The procedure to create a countermeasure performance metric is incorrect because it is not the first step in creating a physical security program. If monitored on a performance basis, it can be used to determine how beneficial and effective the program is. It allows management to make business decisions when investing in physical security protection for the organization. The goal is to improve the performance of the physical security program, leading to a cost-effective way to reduce the company’s risk. You should establish a performance baseline and then continually evaluate performance to ensure that the firm’s protection goals are being met. Examples of possible performance metrics include: number of successful attacks, number of successful attacks, and time taken for attacks.
×:Design program.
Designing the program is wrong because it should be done after the risk analysis. Once the level of risk is understood, then the design phase can be done to protect against the threats identified in the risk analysis. The design of deterrents, delays, detections, assessments, and responses will incorporate the necessary controls for each category of the program.
×:Implement countermeasures.
Wrong because implementing countermeasures is one of the last steps in the process of deploying a physical security program.
#18. David is preparing the server room for the new branch office. He wants to know what locking mechanism should be used for the primary and secondary server room entry doors?
〇:Primary entry doors should have controlled access via swipe card or cryptographic locks. Secondary doors should not be secured from the inside and allowed entry.
Data centers, server rooms, and wiring closets should be located in the core areas of the facility, near wiring distribution centers. Strict access control mechanisms and procedures should be implemented for these areas. Access control mechanisms can lock smart card readers, biometric readers, or a combination of these. These restricted areas should have only one access door, but fire code requirements typically dictate that there must be at least two doors in most data centers and server rooms. Only one door should be used for daily entry and exit and the other door should be used only in case of an emergency, i.e., if a fire breaks out in a data center or server room, the door should be locked. This second door should not be an access door, meaning people should not be able to come through this door. It should be locked, but should have a panic bar that will release the lock if it is used as an exit, pushed from the inside.
×:The primary and secondary entry doors must have control access via swipe cards or cryptographic locks.
This is incorrect because even two entry doors should not be allowed to pass through with the identification, authentication, and authorization process. There should only be one entry point into the server room. No other door should provide an entry point, but can be used for an emergency exit. Therefore, secondary doors should be protected from the inside to prevent intrusion.
×:The primary entry door should have controlled access via a guard. Two doors should not be secured from the inside and allowed entry.
The main entry door to the server room is incorrect as it requires an identification, authentication, and authorization process to be performed. Swipe cards and cryptographic locks perform these functions. Server rooms should ideally not be directly accessible from public areas such as stairways, hallways, loading docks, elevators, and restrooms. This helps prevent foot traffic from casual passersby. Those who are by the door to the area to be secured should have a legitimate reason for being there, as opposed to those on the way to the meeting room, for example.
×:The main entry door must have controlled access via swipe card or crypto lock. Two doors must have security guards.
Two doors should not have security guards, because it is wrong. The door should be protected from the inside simply so it cannot be used as an entry. Two-door must function as an emergency exit.
#19. Which of the following correctly describes the relationship between the reference monitor and the security kernel?
〇:The security kernel implements and executes the reference monitor
The Trusted Computing Base (TCB) is a complete combination of protection mechanisms for a system. These are in the form of hardware, software, and firmware. These same components also comprise the security kernel. Reference monitors are access control concepts implemented and enforced by the security kernel via hardware, software, and firmware. In doing so, it ensures that the security kernel, the subject, has the proper permissions to access the object it is requesting. The subject, be it a program, user, or process, cannot access the requesting file, program, or resource until it is proven that it has the proper access rights.
×:The reference monitor is the core of the Trusted Computing Base (TCP), which is comprised of the security kernel.
This is incorrect because the reference monitor is not the core of the TCB. The core of the TCB is the security kernel, and the security kernel implements the concepts of the reference monitor. The reference monitor is a concept about access control. It is often referred to as an “abstract machine” because it is not a physical component.
×:The reference monitor implements and executes the security kernel.
The reference monitor does not implement and execute the security kernel, which is incorrect. On the contrary, the security kernel implements and executes the reference monitor. The reference monitor is an abstract concept, while the security kernel is a combination of hardware, software, and firmware in a trusted computing base.
×:The security kernel, i.e., the abstract machine, implements the concept of a reference monitor.
This is incorrect because abstract machine is not another name for security kernel. Abstract machine is another name for the reference monitor. This concept ensures that the abstract machine acts as an intermediary between the subject and the object, ensuring that the subject has the necessary rights to access the object it is requesting and protecting the subject from unauthorized access and modification. The security kernel functions to perform these activities.
#20. Which of the following is true about the key derivation function (KDF)?
〇:Keys are generated from a master key.
To generate a composite key, a master key is created and a symmetric key (subkey) is generated. The key derivation function generates the encryption key from the secret value. The secret value can be a master key, passphrase, or password. The key derivation function (KDF) generates a key for symmetric key ciphers from a given password.
×:Session keys are generated from each other.
Session keys are generated from each other, not from the master key, which is incorrect.
×:Asymmetric ciphers are used to encrypt symmetric keys.
It is incorrect because key encryption is not even related to the key derivation function (KDF).
×:The master key is generated from the session key.
Reverse, incorrect. Session keys are generally generated from master keys.




