Domain 3 Exam.
A minimum of 70% is required to pass.
#1. Which of the following is an axiom of access control to ensure that rewriting a supervisor’s document does not release incorrect information to the supervisor?
〇:* (star) Integrity Property
The Biba model defines a model with completeness as having two axioms. The * (star) Integrity Property is that the subordinate’s document is to be seen and there is no Read Down. The * (star) Integrity Property is that there is no Write Up, that is, no rewriting of the supervisor’s document. If the Simple Integrity Axiom is not followed, the subordinate’s document will be seen and may absorb unclassified and incorrect information at a lower level. If the * (star) Integrity Property is not followed, a supervisor’s document will be rewritten, which will release incorrect information to the supervisor who sees it. Therefore, both are integrity conditions.
×:Simple Integrity Property
The Simple Integrity Property is a constraint on Read Down.
×:Strong Tranquillity Axiom
The Strong Tranquillity Axiom is the constraint not to change permissions while the system is running.
×:Weak Tranquillity Axiom
Weak Tranquillity Axiom means do not change privileges until the attribute is inconsistent.
#2. You have been instructed to report to the Board of Directors with a vendor-neutral enterprise architecture framework that will help reduce fragmentation due to inconsistencies between IT and business processes. Which of the following frameworks should you propose?
〇:TOGAF
The Open Group Architecture Framework (TOGAF) is a vendor-independent platform for the development and implementation of enterprise architecture. It focuses on the effective management of enterprise data using metamodels and service-oriented architectures (SOA). Proficient implementations of TOGAF aim to reduce fragmentation caused by inconsistencies between traditional IT systems and actual business processes. It also coordinates new changes and functionality so that new changes can be easily integrated into the enterprise platform.
×:Department of Defense Architecture Framework (DoDAF)
In accordance with the guidelines for the organization of the enterprise architecture of the U.S. Department of Defense systems, this is incorrect. It is also suitable for large, complex integrated systems in the military, civilian, and public sectors.
×:Capability Maturity Model Integration (CMMI) during software development.
It is inappropriate because it is a framework for the purpose of designing and further improving software. CMMI provides a standard for software development processes that can measure the maturity of the development process.
×:ISO/IEC 42010
Incorrect because it consists of recommended practices to simplify the design and conception of software-intensive system architectures. This standard provides a kind of language (terminology) to describe the different components of software architecture and how to integrate it into the development life cycle.
#3. Which of the following is an incorrect benefit of virtualization?
〇:Operating system patching is easier.
This is an incorrect choice question. Virtualization does not simplify operating system patching. In fact, it complicates it by adding at least one additional operating system. Each operating system differs from the typical version configuration, adding to the complexity of patching. The server’s own operating system runs as a guest within the host environment. In addition to patching and maintaining the traditional server operating system, the virtualization software itself must be patched and maintained.
For this question, we do not require an understanding of all the technical systems of virtualization. What is required here is a selection of answers based on a process of elimination.
×:I can build a secure computing platform.
Building a secure computing platform may not be a feature of virtualization per se. However, can we build a secure environment? This is not a false choice because it cannot be ruled out.
×:It can provide fault and error containment.
Virtualization can be host independent. In terms of containment, it can be interpreted as being able to provide fault and error containment through independence from physical servers. Therefore, it cannot be denied and is therefore not an incorrect choice.
×:It can provide powerful debugging capabilities.
Virtualization can reproduce a unique environment, not just put up a clean virtual host. Therefore, it is undeniable and therefore out of the wrong choice.
#4. What are the advantages of depositing cryptographic keys with another organization?
A key escrow system is one in which a third-party organization holds a copy of the public/private key pair. If the private key is stolen, all ciphers can be decrypted. Conversely, if it is lost, all ciphers cannot be decrypted. Therefore, you want to have a copy. However, if you have it yourself, it may be stolen if a break-in occurs, so you leave it with a third-party organization.
#5. David is preparing the server room for the new branch office. He wants to know what locking mechanism should be used for the primary and secondary server room entry doors?
〇:Primary entry doors should have controlled access via swipe card or cryptographic locks. Secondary doors should not be secured from the inside and allowed entry.
Data centers, server rooms, and wiring closets should be located in the core areas of the facility, near wiring distribution centers. Strict access control mechanisms and procedures should be implemented for these areas. Access control mechanisms can lock smart card readers, biometric readers, or a combination of these. These restricted areas should have only one access door, but fire code requirements typically dictate that there must be at least two doors in most data centers and server rooms. Only one door should be used for daily entry and exit and the other door should be used only in case of an emergency, i.e., if a fire breaks out in a data center or server room, the door should be locked. This second door should not be an access door, meaning people should not be able to come through this door. It should be locked, but should have a panic bar that will release the lock if it is used as an exit, pushed from the inside.
×:The primary and secondary entry doors must have control access via swipe cards or cryptographic locks.
This is incorrect because even two entry doors should not be allowed to pass through with the identification, authentication, and authorization process. There should only be one entry point into the server room. No other door should provide an entry point, but can be used for an emergency exit. Therefore, secondary doors should be protected from the inside to prevent intrusion.
×:The primary entry door should have controlled access via a guard. Two doors should not be secured from the inside and allowed entry.
The main entry door to the server room is incorrect as it requires an identification, authentication, and authorization process to be performed. Swipe cards and cryptographic locks perform these functions. Server rooms should ideally not be directly accessible from public areas such as stairways, hallways, loading docks, elevators, and restrooms. This helps prevent foot traffic from casual passersby. Those who are by the door to the area to be secured should have a legitimate reason for being there, as opposed to those on the way to the meeting room, for example.
×:The main entry door must have controlled access via swipe card or crypto lock. Two doors must have security guards.
Two doors should not have security guards, because it is wrong. The door should be protected from the inside simply so it cannot be used as an entry. Two-door must function as an emergency exit.
#6. Which security architecture model defines how to securely develop access rights between subjects and objects?
〇:Graham-Denning Model
The Graham-Denning model addresses how access rights between subjects and objects are defined, developed, and integrated. It defines a basic set of rights in terms of the commands that a particular subject can execute on an object. The model has eight basic protective rights or rules on how to safely perform these types of functions
×:Brewer-Nash Model
It is incorrect because its purpose is to provide access control that can be changed dynamically according to the user’s previous actions. The main purpose is to protect against conflicts of interest due to user access attempts. For example, if a large marketing firm provides marketing promotions and materials for two banks, the employee responsible for the Bank A project should not be able to see information about Bank B, the marketing firm’s other bank customer. A conflict of interest could arise because the banks are competitors. If the project manager of the marketing firm’s Project A can see information about Bank B’s new marketing campaign, he may attempt to execute it rather than promote it to please more direct customers. Marketing firms have a bad reputation when internal employees can act irresponsibly.
×:Clark-Wilson Model
The Clark-Wilson model is incorrect because it is implemented to protect data integrity and ensure that transactions are properly formatted within the application. Subjects can only access objects through authorized programs. Segregation of duties is enforced. Auditing is required. The Clark-Wilson model addresses three integrity goals: preventing changes by unauthorized users, preventing inappropriate changes by unauthorized users, and maintaining internal and external consistency.
×:Bell-LaPadula Model
This model was developed to address concerns about the security of U.S. military systems and the leakage of classified information, and is incorrect. The primary goal of the model is to prevent unauthorized access to classified information. It is a state machine model that enforces the confidentiality aspect of access control. Matrices and security levels are used to determine if a subject has access to different objects. Specific rules are applied to control how objects interact with each other compared to the subject’s object classification.
#7. Which is the difference between public key cryptography and public key infrastructure?
〇:Public key infrastructure is a mechanism configuration for public key cryptographic distribution, and public key cryptography is another name for asymmetric encryption.
Public key cryptography is asymmetric cryptography. The terms are used interchangeably. Public key cryptography is a concept within the Public Key Infrastructure (PKI), which consists of various parts such as Certificate Authorities, Registration Authorities, certificates, keys, programs, and users. Public Key Infrastructure is used to identify and create users, distribute and maintain certificates, revoke and distribute certificates, maintain encryption keys, and for the purpose of encrypted communication and authentication.
×:Public key infrastructure uses symmetric algorithms and public key cryptography uses asymmetric algorithms.
This is incorrect because the public key infrastructure uses a hybrid system of symmetric and asymmetric key algorithms and methods. Public key cryptography is to use asymmetric algorithms. Therefore, asymmetric and public key cryptography are interchangeable, meaning they are the same. Examples of asymmetric algorithms are RSA, elliptic curve cryptography (ECC), Diffie-Hellman, and El Gamal.
×:Public key infrastructure is used to perform key exchange, while public key cryptography is used to create public/private key pairs.
This is incorrect because public key cryptography is the use of asymmetric algorithms used to create public/private key pairs, perform key exchange, and generate and verify digital signatures.
×:Public key infrastructure provides confidentiality and integrity, while public key cryptography provides authentication and non-repudiation.
Incorrect because the public key infrastructure itself does not provide authentication, non-repudiation, confidentiality, or integrity.
#8. Which of the following events occurs in a PKI environment?
〇:CA signs certificates.
A Certificate Authority (CA) is a trusted agency (or server) that maintains digital certificates. When a certificate is requested, the Registration Authority (RA) verifies the identity of the individual and passes the certificate request to the CA The CA creates the certificate, signs it, and maintains the certificate over its lifetime.
×:RA creates the certificate and CA signs it.
Incorrect because the RA does not create the certificate; the CA creates it and signs it; the RA performs authentication and registration tasks; establishes the RA, verifies the identity of the individual requesting the certificate, initiates the authentication process to the CA on behalf of the end user, and performs certificate life cycle RAs cannot issue certificates, but can act as a broker between the user and the CA When a user needs a new certificate, they make a request to the RA and the RA goes to the CA to verify all necessary identification before granting the request The RA verifies all necessary identification information before granting the request.
×:RA signs certificates.
The RA signs the certificate, which is incorrect because the RA does not sign the certificate; the CA signs the certificate; the RA verifies the user’s identifying information and then sends the certificate request to the CA.
×:The user signs the certificate.
Incorrect because the user has not signed the certificate; in a PKI environment, the user’s certificate is created and signed by the CA. The CA is a trusted third party that generates the user certificate holding its public key.
#9. Marge uses her private key to create a digital signature for messages sent to George, but she does not show or share her private key with George. Which of the following illustrates this situation?
〇:Zero Knowledge Proof
Zero Knowledge Proof means that someone can tell you something without telling you more information than you need to know. In cryptography, it means proving that you have a certain key without sharing that key or showing it to anyone. Zero knowledge proof (usually mathematical) is an interactive way for one party to prove to another that something is true without revealing anything sensitive.
×:Key Clustering
Key clustering is the phenomenon of encrypting the same plaintext with different keys, but with the same ciphertext.
×:Avoiding Birthday Attacks
An attacker can attempt to force a collision, called a birthday attack. This attack is based on the mathematical birthday paradox present in standard statistics. This is a cryptographic attack that uses probability theory to exploit the mathematics behind the birthday problem.
×:Provides data confidentiality
Provided via encryption when data is encrypted with a key, which is incorrect.
#10. Several steps must be taken before an effective physical security program can be rolled out. Which of the following steps comes first in the process of rolling out a security program?
〇:Conduct a risk analysis.
The first step in the procedure described, which is the first step to be taken only to deploy an effective physical security program, is to conduct a risk analysis to identify vulnerabilities and threats and to calculate the business impact of each threat. The team presents the results of the risk analysis to management to define an acceptable risk level for the physical security program. From there, the team evaluates and determines if the baseline is met by implementation. Once the team identifies its responses and implements the measures, performance is continually evaluated. These performances will be compared to the established baselines. If the baseline is maintained on an ongoing basis, the security program is successful because it does not exceed the company’s acceptable risk level.
×:Create a performance metric for the countermeasure.
The procedure to create a countermeasure performance metric is incorrect because it is not the first step in creating a physical security program. If monitored on a performance basis, it can be used to determine how beneficial and effective the program is. It allows management to make business decisions when investing in physical security protection for the organization. The goal is to improve the performance of the physical security program, leading to a cost-effective way to reduce the company’s risk. You should establish a performance baseline and then continually evaluate performance to ensure that the firm’s protection goals are being met. Examples of possible performance metrics include: number of successful attacks, number of successful attacks, and time taken for attacks.
×:Design program.
Designing the program is wrong because it should be done after the risk analysis. Once the level of risk is understood, then the design phase can be done to protect against the threats identified in the risk analysis. The design of deterrents, delays, detections, assessments, and responses will incorporate the necessary controls for each category of the program.
×:Implement countermeasures.
Wrong because implementing countermeasures is one of the last steps in the process of deploying a physical security program.
#11. Which of the following is true about the key derivation function (KDF)?
〇:Keys are generated from a master key.
To generate a composite key, a master key is created and a symmetric key (subkey) is generated. The key derivation function generates the encryption key from the secret value. The secret value can be a master key, passphrase, or password. The key derivation function (KDF) generates a key for symmetric key ciphers from a given password.
×:Session keys are generated from each other.
Session keys are generated from each other, not from the master key, which is incorrect.
×:Asymmetric ciphers are used to encrypt symmetric keys.
It is incorrect because key encryption is not even related to the key derivation function (KDF).
×:The master key is generated from the session key.
Reverse, incorrect. Session keys are generally generated from master keys.
#12. What is the AES algorithm used for?
〇:Data Encryption
The Advanced Encryption Standard (AES) is a data encryption standard developed to improve upon the previous de facto standard, Data Encryption Standard (DES). As a symmetric algorithm, AES is used to encrypt data. Therefore, the correct answer is “data encryption.
There are other situations where AES is used in the other choices, but encrypting data is the most focused or better answer. Thus, there are cases where all of the choices are correct.
×:Data integrity
This is a characteristic of digital signatures.
×:Key recovery
It is a property of decryption and key escrow.
×:Symmetric key distribution
Using symmetric keys for AES distribution lowers the key delivery problem.
#13. Jeff would like to incorporate encryption technology into the new product. He is considering encryption methods available on the Internet. What advice should we give him?
Cryptographic algorithms refer to the calculations to be encrypted, and even if the cryptographic algorithms were publicly available, it would take an enormous amount of effort to decipher them. cryptographic algorithms that provide modern cryptography, such as AES, are publicly available. On the other hand, in-house development is not recommended because, although it has the security of concealment, it requires a great deal of resources to be allocated.
#14. Which of the following comes closest to defining a virtual machine?
#15. Which of the following is a drawback of the symmetric key system?
〇:Keys will need to be distributed via a secure transmission channel.
For two users to exchange messages encrypted with a symmetric algorithm, they need to figure out how to distribute the key first. If the key is compromised, all messages encrypted with that key can be decrypted and read by an intruder. Simply sending the key in an email message is not secure because the key is not protected and can easily be intercepted and used by an attacker.
×:Computation is more intensive than in asymmetric systems.
That is incorrect because it describes the advantages of symmetric algorithms. Symmetric algorithms tend to be very fast because they are less computationally intensive than asymmetric algorithms. They can encrypt and decrypt relatively quickly large amounts of data that take an unacceptable amount of time to encrypt and decrypt with asymmetric algorithms.
×:Much faster operation than asymmetric systems
Symmetric algorithms are faster than asymmetric systems, but this is an advantage. Therefore, it is incorrect.
×:Mathematically intensive tasks must be performed
Asymmetric algorithms are wrong because they perform a mathematically intensive task. Symmetric algorithms, on the other hand, perform relatively simple mathematical functions on bits during the encryption and decryption process.
#16. Similar to logical access control, audit logs should also be generated and monitored for physical access control. Which of the following statements is true regarding auditing physical access?
〇:All failed access attempts should be logged and reviewed.
The physical access control system may use software and auditing capabilities to generate an audit trail or access log associated with access attempts. The date and time of the entry point when access was attempted, the user ID used when access was attempted, and any failed access attempts, among others, should be recorded.
×:Failed access attempts are recorded and only security personnel are entitled to review them.
Unless someone actually reviews them, the access logs are as useless as the audit logs generated by the computer. Security guards should review these logs, but security professionals and facility managers should review these logs on a regular basis. The administrator must know the existence and location of entry points into the facility.
×:Only successful access attempts should be logged and reviewed.
Wrong, as unsuccessful access attempts should be logged and reviewed. Audit should be able to alert you to suspicious activity even though you are denying an entity access to a network, computer, or location.
×:Failed access attempts outside of business hours should be logged and reviewed.
Incorrect, as all unauthorized access attempts should be logged and reviewed regardless. Unauthorized access can occur at any time.
#17. According to the Kerckhoffs’s principle, which of the following should not leak?
The Kerckhoffs’s principle is the idea that cryptography should be secure even if everything but the private key is known. When encrypting data, one decides on a private key and how to encrypt it using that private key. Kerckhoffs says that even if it is known how it is encrypted, it should not be deciphered as long as the secret key is not discovered. Encryption has been with the history of human warfare. The main purpose is to communicate a strategy to one’s allies without being discovered by the enemy. In battle, its designs and encryption devices may be stolen by spies. Therefore, the encryption must be such that it cannot be solved without the key, no matter how much is known about how it works.
#18. The Trusted Computing Base (TCB) ensures security within the system when a process in one domain needs to access another domain to obtain sensitive information. What functions does the TCB perform to ensure this is done in a secure manner?
〇:Execution Domain Switching
Execution domain switching occurs when the CPU needs to move between executing instructions for a more trusted process versus a less trusted process. Trusted Computing Base (TCB) allows processes to switch domains in a secure manner to access different levels of information based on sensitivity. Execution domain switching occurs when a process needs to invoke a process in a higher protection ring. The CPU executes the user-mode instruction back into privileged mode.
At first glance, this is a geeky problem that does not make sense. But don’t give up. Since there is no such thing as skipping, you can only get a right or wrong answer when the question is posed, so it is preferable to answer the question with some degree of prediction.
From this point on, let’s consider how to answer the questions. If you look at the question text and read it to the point where it reads, “You moved from one area to the other, and that was a security breach?” If you can read to that point, then you have two choices: deny or “stop the process,” or change or “switch the domain of execution. Next, the question text reads “if you need to access it,” which is asking how to accomplish this objective, not whether or not you should.
×:Execution of I/O operations
This is incorrect because input/output (I/O) operations are not initiated to ensure security when a process in one domain needs to access another domain in order to retrieve sensitive information. I/O operations are performed when input devices (such as a mouse or keyboard) and output devices (such as a monitor or printer, etc.) interact with an application or applications.
×:Stopping a Process
A process deactivation is one that occurs when a process instruction is fully executed by the CPU or when another process with a higher priority calls the CPU, which is incorrect. When a process is deactivated, new information about the new requesting process must be written to a register in the CPU. The TCB component must ensure that this is done, since the data replaced in the registers may be confidential.
×:Mapping from virtual memory to real memory
Incorrect because memory mapping occurs when a process needs its instructions and data processed by the CPU. The memory manager maps logical addresses to physical addresses so that the CPU knows where to place the data. This is the responsibility of the operating system’s memory manager.
#19. Which of the following best describes the difference between a firewall embedded in a hypervisor and a virtual firewall operating in bridge mode?
〇:A virtual firewall in bridge mode allows the firewall to monitor individual traffic links, while a firewall integrated into the hypervisor can monitor all activity taking place within the host system.
Virtual firewalls can be bridge-mode products that monitor individual communication links between virtual machines. They can also be integrated within a hypervisor in a virtual environment. The hypervisor is the software component that manages the virtual machines and monitors the execution of guest system software. When a firewall is embedded within the hypervisor, it can monitor all activities that occur within the host system.
×:A virtual firewall in bridge mode allows the firewall to monitor individual network links, while a firewall integrated into the hypervisor can monitor all activities taking place within the guest system.
A virtual firewall in bridge mode is incorrect because the firewall can monitor individual traffic links between hosts and not network links. Hypervisor integration allows the firewall to monitor all activities taking place within the guest system rather than the host system.
×:A virtual firewall in bridge mode allows the firewall to monitor individual traffic links, while a firewall integrated into the hypervisor can monitor all activities taking place within the guest system.
A virtual firewall in bridge mode is wrong because the firewall can monitor individual traffic links, and the hypervisor integration allows the firewall to monitor all activity taking place within the host system, but not the guest system. The hypervisor is the software component that manages the virtual machines and monitors the execution of the guest system software. A firewall, when embedded within the hypervisor, can monitor all activities taking place within the system.
×:A virtual firewall in bridge mode allows the firewall to monitor individual guest systems, while a firewall integrated into the hypervisor can monitor all activities taking place within the network system.
A virtual firewall in bridge mode allows the firewall to monitor individual traffic between guest systems, and a hypervisor integrated allows the firewall to monitor all activity taking place within the host system, not the network system, so Wrong.
#20. Which of the following is the most difficult to discover keys among known-plaintext attacks, selective-plaintext attacks, and adaptive-selective-plaintext attacks?
〇:Known Plaintext Attacks
A known-plaintext attack is a situation in which a decryptor can obtain plaintext indiscriminately. A ciphertext-alone attack is a situation where a decryptor can acquire ciphertext indiscriminately. A known-plaintext attack acquires the plaintext but does not know what ciphertext it is paired with, meaning that decryption is attempted with only two random ciphertexts. In this situation, it is difficult to decrypt. Therefore, the correct answer is “known-plaintext attack.
×:Selective Plaintext Attack
A choice-plaintext attack is a situation in which the decryptor can freely choose the plaintext to acquire and obtain the ciphertext.
×:Adaptive Choice Plaintext Attack
An adaptive choice-plaintext attack is a situation in which the decryptor can freely choose which plaintext to acquire and acquire the ciphertext, and can repeat the acquisition again after seeing the result.
×:None of the above
It is rare for the answer to be “none of the above” when the choice is “most of the above.




