Domain 3 Exam.
A minimum of 70% is required to pass.
#1. The CA is responsible for revoking the required certificates. Which of the following adequately describes CRLs and OCSPs?
〇:OCSP is a protocol developed specifically to check CRLs during the certificate validation process.
A Certificate Authority (CA) is responsible for creating certificates, maintaining and distributing them, and revoking them when necessary. Revocation is handled by the CA and the revoked certificate information is stored in a Certificate Revocation List (CRL). This is a list of all revoked certificates. This list is maintained and updated periodically. A certificate is revoked if the key owner’s private key has been compromised, if the CA has been compromised, or if the certificate is incorrect. If a certificate is revoked for any reason, the CRL is a mechanism for others to inform you of this information. The Online Certificate Status Protocol (OCSP) uses this CRL; when using CRLs, the user’s browser must examine the CRL value to the client to see if the accreditation has been revoked or the CA is constantly checking to make sure they have an updated CRL. If OCSP is implemented, it will do this automatically in the background. It performs real-time verification of the certificate and reports back to the user whether the certificate is valid, invalid, or unknown.
×:CRL was developed as a more efficient approach to OCSP.
CRLs are often incorrect because they are a cumbersome approach; OCSP is used to deal with this tediousness; OCSP does this work in the background when using CRLs; OCSP checks the CRL to see if the certificate has been revoked by Checks.
×:OCSP is a protocol for submitting revoked certificates to CRLs.
OCSP is incorrect because it does not submit revoked certificates to the CRL; the CA is responsible for certificate creation, distribution, and maintenance.
×:CRL provides real-time validation of certificates and reports to OCSP.
Incorrect because CRL does not provide real-time validation of certificates to OCSP.
#2. Which of the following comes closest to defining a virtual machine?
#3. Mandy needs to generate keys for 260 employees using the company’s asymmetric algorithm. How many keys will be needed?
In an asymmetric algorithm, every user must have at least one key pair (private and public key). In a public key system, each entity has a separate key. The formula for determining the number of keys needed in this environment is by the number N × 2, where N is the number of people to distribute. In other words, 260 x 2 = 520. Therefore, the correct answer is 520.
#4. What should I use for streaming ciphers?
〇:One-time pad
Stream ciphers refer to one-time pad technology. In practice, stream ciphers cannot provide the level of protection that one-time pads do, but are practical.
×:AES
AES is incorrect because it is a symmetric block cipher. When a block cipher is used for encryption and decryption purposes, the message is divided into blocks of bits.
×:Block ciphers
Block ciphers are used for encryption and decryption purposes. The message is wrong because it is divided into blocks of bits.
×:RSA
RSA is incorrect because it is an asymmetric algorithm.
#5. Lacy’s manager assigned her to research intrusion detection systems for the new dispatching center. Lacey identifies the top five products and compares their ratings. Which of the following is the most used evaluation criteria framework today for this purpose?
〇:Common Criteria
Common Criteria was created in the early 1990s as a way to combine the strengths of both the Trustworthy Computer Systems Evaluation Criteria (TCSEC) and the Information Technology Security Evaluation Criteria (ITSEC) and eliminate their weaknesses. Common Criteria is more flexible than TCSEC and easier than ITSEC. Common Criteria is recognized worldwide and assists consumers by reducing the complexity of assessments and eliminating the need to understand the definitions and meanings of different assessments in different assessment schemes. This also helps manufacturers because they can now build a specific set of requirements when they want to market their products internationally, rather than having to meet several different evaluation criteria under different rules and requirements.
×:ITSEC
This is incorrect because it is not the most widely used information technology security evaluation standard. ITSEC was the first attempt to establish a single standard for evaluating the security attributes of computer systems and products in many European countries. In addition, ITSEC separates functionality and assurance in its evaluations, giving each a separate rating. It was developed to provide greater flexibility than TCSEC and addresses integrity, availability, and confidentiality in networked systems. The goal of ITSEC was to become the global standard for product evaluation, but it failed to achieve that goal and was replaced by Common Criteria.
×:Red Book
Wrong, as it is a U.S. government publication that addresses the topic of security evaluation of networks and network components. Formally titled Trusted Network Interpretation, it provides a framework for protecting different types of networks. Subjects accessing objects on the network must be controlled, monitored, and audited.
×:Orange Book
Incorrect as this is a U.S. Government publication that addresses government and military requirements and expectations for operating systems. The Orange Book is used to evaluate whether a product is suitable for the security characteristics and specific applications or functions required by the vendor. The Orange Book is used to review the functionality, effectiveness, and assurance of the product under evaluation, using classes designed to address typical patterns of security requirements. It provides a broad framework for building and evaluating trusted systems, with an emphasis on controlling which users have access to the system. We call it the Orange Book, but another name for it is Trusted Computer System Evaluation Criteria (TCSEC).
#6. What are the advantages of depositing cryptographic keys with another organization?
A key escrow system is one in which a third-party organization holds a copy of the public/private key pair. If the private key is stolen, all ciphers can be decrypted. Conversely, if it is lost, all ciphers cannot be decrypted. Therefore, you want to have a copy. However, if you have it yourself, it may be stolen if a break-in occurs, so you leave it with a third-party organization.
#7. Which of the following is an incorrect benefit of virtualization?
〇:Operating system patching is easier.
This is an incorrect choice question. Virtualization does not simplify operating system patching. In fact, it complicates it by adding at least one additional operating system. Each operating system differs from the typical version configuration, adding to the complexity of patching. The server’s own operating system runs as a guest within the host environment. In addition to patching and maintaining the traditional server operating system, the virtualization software itself must be patched and maintained.
For this question, we do not require an understanding of all the technical systems of virtualization. What is required here is a selection of answers based on a process of elimination.
×:I can build a secure computing platform.
Building a secure computing platform may not be a feature of virtualization per se. However, can we build a secure environment? This is not a false choice because it cannot be ruled out.
×:It can provide fault and error containment.
Virtualization can be host independent. In terms of containment, it can be interpreted as being able to provide fault and error containment through independence from physical servers. Therefore, it cannot be denied and is therefore not an incorrect choice.
×:It can provide powerful debugging capabilities.
Virtualization can reproduce a unique environment, not just put up a clean virtual host. Therefore, it is undeniable and therefore out of the wrong choice.
#8. TLS is a protocol used to protect transactions that occur over an untrusted network. Which of the following is an appropriate description of what takes place during the setup process of a TLS connection?
〇:The client generates a session key and encrypts it with a public key.
Transport Layer Security (TLS) uses public key cryptography to provide data encryption, server authentication, message integrity, and optionally client authentication. When a client accesses a cryptographically protected page, the web server initiates TLS and begins the process of securing subsequent communications. The server performs a three-handshake to establish a secure session. After that, client authentication with a digital certificate, as the case may be, comes in. The client then generates a session key, encrypts it with the server’s public key, and shares it. This session key is used as the symmetric key for encrypting the data to be transmitted thereafter. Thus, the correct answer is: “The client generates a session key and encrypts it with the public key.” will be
×:The server generates the session key and encrypts it with the public key.
The server does not encrypt with the public key.
×:The server generates a session key and encrypts it with the private key.
Even if encryption is performed from the server side, it can be decrypted with the public key, so it is not structurally possible.
×:The client generates a session key and encrypts it with its private key.
The client side does not have the private key.
#9. Similar to logical access control, audit logs should also be generated and monitored for physical access control. Which of the following statements is true regarding auditing physical access?
〇:All failed access attempts should be logged and reviewed.
The physical access control system may use software and auditing capabilities to generate an audit trail or access log associated with access attempts. The date and time of the entry point when access was attempted, the user ID used when access was attempted, and any failed access attempts, among others, should be recorded.
×:Failed access attempts are recorded and only security personnel are entitled to review them.
Unless someone actually reviews them, the access logs are as useless as the audit logs generated by the computer. Security guards should review these logs, but security professionals and facility managers should review these logs on a regular basis. The administrator must know the existence and location of entry points into the facility.
×:Only successful access attempts should be logged and reviewed.
Wrong, as unsuccessful access attempts should be logged and reviewed. Audit should be able to alert you to suspicious activity even though you are denying an entity access to a network, computer, or location.
×:Failed access attempts outside of business hours should be logged and reviewed.
Incorrect, as all unauthorized access attempts should be logged and reviewed regardless. Unauthorized access can occur at any time.
#10. Which of the following physical environment designs combines sociology to reduce crime rates and fear of crime?
〇:Crime Prevention by Environmental Design (CPTED)
Crime Prevention by Environmental Design (CPTED) is a method by which crime can be reduced through proper design of the physical environment. It provides guidance on appropriate facility construction and environmental elements and crime prevention. It is used to guide the physical environment to behavioral effects that reduce crime.
×:Multi-layered defense model
The multi-layered defense model is incorrect because it is a hierarchical architecture of physical, logical, and administrative security controls. The concept is that if one layer fails, the asset is protected by other layers. Layers should be moved from the perimeter toward the asset and implemented.
×:Hiding by Ambiguity
Concealment by ambiguity is a technique of concealment secured by concealment of information and is incorrect. Basically, it is better not to consider something to be a true secret if it is logically reachable, even if it is not public.
×:Access Control
Access control is incorrect because it is guidance by the placement of doors, fences, lighting, and landscaping as people enter. It is an abstract concept and would not fit into a concrete definition that combines sociology.
#11. Which is the difference between public key cryptography and public key infrastructure?
〇:Public key infrastructure is a mechanism configuration for public key cryptographic distribution, and public key cryptography is another name for asymmetric encryption.
Public key cryptography is asymmetric cryptography. The terms are used interchangeably. Public key cryptography is a concept within the Public Key Infrastructure (PKI), which consists of various parts such as Certificate Authorities, Registration Authorities, certificates, keys, programs, and users. Public Key Infrastructure is used to identify and create users, distribute and maintain certificates, revoke and distribute certificates, maintain encryption keys, and for the purpose of encrypted communication and authentication.
×:Public key infrastructure uses symmetric algorithms and public key cryptography uses asymmetric algorithms.
This is incorrect because the public key infrastructure uses a hybrid system of symmetric and asymmetric key algorithms and methods. Public key cryptography is to use asymmetric algorithms. Therefore, asymmetric and public key cryptography are interchangeable, meaning they are the same. Examples of asymmetric algorithms are RSA, elliptic curve cryptography (ECC), Diffie-Hellman, and El Gamal.
×:Public key infrastructure is used to perform key exchange, while public key cryptography is used to create public/private key pairs.
This is incorrect because public key cryptography is the use of asymmetric algorithms used to create public/private key pairs, perform key exchange, and generate and verify digital signatures.
×:Public key infrastructure provides confidentiality and integrity, while public key cryptography provides authentication and non-repudiation.
Incorrect because the public key infrastructure itself does not provide authentication, non-repudiation, confidentiality, or integrity.
#12. Which microprocessor technology has also been linked to facilitating certain attacks?
〇:Increased Processing Power
The increased processing power of personal computers and servers has increased the probability of successful brute force and cracking attacks against security mechanisms that were not feasible a few years ago. Today’s processors can execute an incredible number of instructions per second. These instructions can be used to break passwords, encryption keys, or direct malicious packets to be sent to the victim’s system.
×:Increased circuitry, cache memory, and multiprogramming
This is incorrect because an increase does not make a particular type of attack more powerful. Multiprogramming means loading multiple programs or processes into memory at the same time. It allows antivirus software, word processors, firewalls, and e-mail clients to run simultaneously. Cache memory is a type of memory used for fast write and read operations. If the system expects that the program logic will need to access certain information many times during processing, the information is stored in cache memory for easy and quick access.
×:Dual-mode computation
The answer is not specific and does not measure conformance to the problem. When examining microprocessor advances, there is no actual dual-mode calculation.
×:Direct Memory Access I/O
Incorrect because this method transfers instructions and data between I/O (input/output) devices and the system’s memory without using the CPU. Direct Memory Access I/O significantly increases data transfer speed.
#13. Which of the following is an incorrect description of steganography?
〇:The most common method used is to change the most significant bit.
Steganography is a method of hiding data in other media types. One of the most common ways to embed messages in some types of media is using the least significant bit (LSB). This is because many types of files are modified and this is where sensitive data can be made visible and hidden without modifying the file. the LSB approach has been successful in hiding information within the graphics of high-resolution or sound-heavy audio files (high bit rate).
×:Hiding by abstraction.
Steganography is incorrect because it is concealment by abstraction. Security by obscurity means that someone uses secrecy as a way to protect an asset, rather than actually using the measure to secure something.
×:Just as encryption does, steganography is not a front for the existence of the sensitive data itself.
It is true that steganography does not draw attention to itself as does encryption. In other words, it is concealment by abstraction.
×:Media files are ideal for steganographic transmissions that are large in size.
This is incorrect because it is true that larger media files are ideal for steganographic transmissions because everyone needs to privately use multiple bits to manipulate with low likelihood of noticing.
#14. Several steps must be taken before an effective physical security program can be rolled out. Which of the following steps comes first in the process of rolling out a security program?
〇:Conduct a risk analysis.
The first step in the procedure described, which is the first step to be taken only to deploy an effective physical security program, is to conduct a risk analysis to identify vulnerabilities and threats and to calculate the business impact of each threat. The team presents the results of the risk analysis to management to define an acceptable risk level for the physical security program. From there, the team evaluates and determines if the baseline is met by implementation. Once the team identifies its responses and implements the measures, performance is continually evaluated. These performances will be compared to the established baselines. If the baseline is maintained on an ongoing basis, the security program is successful because it does not exceed the company’s acceptable risk level.
×:Create a performance metric for the countermeasure.
The procedure to create a countermeasure performance metric is incorrect because it is not the first step in creating a physical security program. If monitored on a performance basis, it can be used to determine how beneficial and effective the program is. It allows management to make business decisions when investing in physical security protection for the organization. The goal is to improve the performance of the physical security program, leading to a cost-effective way to reduce the company’s risk. You should establish a performance baseline and then continually evaluate performance to ensure that the firm’s protection goals are being met. Examples of possible performance metrics include: number of successful attacks, number of successful attacks, and time taken for attacks.
×:Design program.
Designing the program is wrong because it should be done after the risk analysis. Once the level of risk is understood, then the design phase can be done to protect against the threats identified in the risk analysis. The design of deterrents, delays, detections, assessments, and responses will incorporate the necessary controls for each category of the program.
×:Implement countermeasures.
Wrong because implementing countermeasures is one of the last steps in the process of deploying a physical security program.
#15. Which of the following is an axiom of access control to ensure that rewriting a supervisor’s document does not release incorrect information to the supervisor?
〇:* (star) Integrity Property
The Biba model defines a model with completeness as having two axioms. The * (star) Integrity Property is that the subordinate’s document is to be seen and there is no Read Down. The * (star) Integrity Property is that there is no Write Up, that is, no rewriting of the supervisor’s document. If the Simple Integrity Axiom is not followed, the subordinate’s document will be seen and may absorb unclassified and incorrect information at a lower level. If the * (star) Integrity Property is not followed, a supervisor’s document will be rewritten, which will release incorrect information to the supervisor who sees it. Therefore, both are integrity conditions.
×:Simple Integrity Property
The Simple Integrity Property is a constraint on Read Down.
×:Strong Tranquillity Axiom
The Strong Tranquillity Axiom is the constraint not to change permissions while the system is running.
×:Weak Tranquillity Axiom
Weak Tranquillity Axiom means do not change privileges until the attribute is inconsistent.
#16. According to the Kerckhoffs’s principle, which of the following should not leak?
The Kerckhoffs’s principle is the idea that cryptography should be secure even if everything but the private key is known. When encrypting data, one decides on a private key and how to encrypt it using that private key. Kerckhoffs says that even if it is known how it is encrypted, it should not be deciphered as long as the secret key is not discovered. Encryption has been with the history of human warfare. The main purpose is to communicate a strategy to one’s allies without being discovered by the enemy. In battle, its designs and encryption devices may be stolen by spies. Therefore, the encryption must be such that it cannot be solved without the key, no matter how much is known about how it works.
#17. Which of the following is a drawback of the symmetric key system?
〇:Keys will need to be distributed via a secure transmission channel.
For two users to exchange messages encrypted with a symmetric algorithm, they need to figure out how to distribute the key first. If the key is compromised, all messages encrypted with that key can be decrypted and read by an intruder. Simply sending the key in an email message is not secure because the key is not protected and can easily be intercepted and used by an attacker.
×:Computation is more intensive than in asymmetric systems.
That is incorrect because it describes the advantages of symmetric algorithms. Symmetric algorithms tend to be very fast because they are less computationally intensive than asymmetric algorithms. They can encrypt and decrypt relatively quickly large amounts of data that take an unacceptable amount of time to encrypt and decrypt with asymmetric algorithms.
×:Much faster operation than asymmetric systems
Symmetric algorithms are faster than asymmetric systems, but this is an advantage. Therefore, it is incorrect.
×:Mathematically intensive tasks must be performed
Asymmetric algorithms are wrong because they perform a mathematically intensive task. Symmetric algorithms, on the other hand, perform relatively simple mathematical functions on bits during the encryption and decryption process.
#18. Which of the following is the appropriate method of creating a digital signature?
〇:The sender encrypts the message digest with his/her private key.
A digital signature is a hash value encrypted with the sender’s private key. The act of digitally signing means encrypting the hash value of the message with his/her private key. The sender would encrypt that hash value using her private key. When the recipient receives the message, she performs a hash function on the message and generates the hash value herself. She then decrypts the hash value (digital signature) sent with the sender’s public key. The receiver compares the two values and, if they are the same, can verify that the message was not altered during transmission.
×:The sender encrypts the message digest with his/her public key.
The sender is wrong because if the message encrypts the digest with his/her public key, the recipient cannot decrypt it. The recipient needs access to the sender’s private key, which must not occur. The private key must always be kept secret.
×:The receiver encrypts the message digest with his/her private key.
The receiver is wrong because the message must decrypt the digest with the sender’s public key. The message digest is encrypted with the sender’s private key, which can only be decrypted with the sender’s public key.
×:The receiver encrypts the message digest with his/her public key.
The receiver is wrong because the message must decrypt the digest with the sender’s public key. The message digest is encrypted with the sender’s private key, which can only be decrypted with the sender’s public key.
#19. Insider trading can occur through the unintentional transmission of information. Which of the following access control models is most appropriate to prepare for such an eventuality?
〇:Brewer-Nash Model
The Chinese Wall Model is a security model that focuses on the flow of information within an organization, such as insider trading. Insider trading occurs when inside information leaks to the outside world. In reality, information can spread to unexpected places as it is passed on orally to unrelated parties. In order to take such information flow into account, access privileges are determined in a simulation-like manner. Therefore, the correct answer is the “Chinese Wall Model (Brewer-Nash Model).
×:Lattice-based Access Control
Lattice-based access control is to assume that a single entity can have multiple access rights and to consider access control as all possible relationships under a certain condition.
×:Biba Model
The Biba model is a security model that indicates that data cannot be changed without permission.
×:Harrison-Ruzzo-Ullman Model
The Harrison-Ruzzo-Ullman model is a model that aggregates the eight rules of the Graham-Denning model into six rules using an access control matrix.
#20. Symmetric ciphers include stream ciphers and block ciphers. Which of the following is not a suitable characteristic of stream ciphers?
〇:Statistically predictable
The two main types of symmetric algorithms are block ciphers and stream ciphers. Block ciphers perform a mathematical function on a block of bits at a time. Stream ciphers do not divide the message into blocks. Instead, a stream cipher treats the message as a stream of bits and performs the mathematical function on each bit individually. If it were statistically predictable, it would not be a practical encryption technique in the first place.
×:Statistically Fair Keystreams
Statistically fair keystreams are an element of good stream ciphers. Therefore, it is incorrect. Another way to say a statistically unbiased keystream is that it is a highly random keystream that is difficult to predict.
×:The repetitive pattern of bit strings treated in a keystream is long.
Another way to say the randomness of a keystream is that it is highly random, with long repetitions = rarely repeated = highly random.
×:The keystream is irrelevant to the key.
A keystream that is not related to a key is an element of a good stream cipher. Therefore, it is incorrect. This is important because the key provides the randomness of the encryption process.




