Domain 3 Exam.
A minimum of 70% is required to pass.
#1. Marge uses her private key to create a digital signature for messages sent to George, but she does not show or share her private key with George. Which of the following illustrates this situation?
〇:Zero Knowledge Proof
Zero Knowledge Proof means that someone can tell you something without telling you more information than you need to know. In cryptography, it means proving that you have a certain key without sharing that key or showing it to anyone. Zero knowledge proof (usually mathematical) is an interactive way for one party to prove to another that something is true without revealing anything sensitive.
×:Key Clustering
Key clustering is the phenomenon of encrypting the same plaintext with different keys, but with the same ciphertext.
×:Avoiding Birthday Attacks
An attacker can attempt to force a collision, called a birthday attack. This attack is based on the mathematical birthday paradox present in standard statistics. This is a cryptographic attack that uses probability theory to exploit the mathematics behind the birthday problem.
×:Provides data confidentiality
Provided via encryption when data is encrypted with a key, which is incorrect.
#2. Which is the difference between public key cryptography and public key infrastructure?
〇:Public key infrastructure is a mechanism configuration for public key cryptographic distribution, and public key cryptography is another name for asymmetric encryption.
Public key cryptography is asymmetric cryptography. The terms are used interchangeably. Public key cryptography is a concept within the Public Key Infrastructure (PKI), which consists of various parts such as Certificate Authorities, Registration Authorities, certificates, keys, programs, and users. Public Key Infrastructure is used to identify and create users, distribute and maintain certificates, revoke and distribute certificates, maintain encryption keys, and for the purpose of encrypted communication and authentication.
×:Public key infrastructure uses symmetric algorithms and public key cryptography uses asymmetric algorithms.
This is incorrect because the public key infrastructure uses a hybrid system of symmetric and asymmetric key algorithms and methods. Public key cryptography is to use asymmetric algorithms. Therefore, asymmetric and public key cryptography are interchangeable, meaning they are the same. Examples of asymmetric algorithms are RSA, elliptic curve cryptography (ECC), Diffie-Hellman, and El Gamal.
×:Public key infrastructure is used to perform key exchange, while public key cryptography is used to create public/private key pairs.
This is incorrect because public key cryptography is the use of asymmetric algorithms used to create public/private key pairs, perform key exchange, and generate and verify digital signatures.
×:Public key infrastructure provides confidentiality and integrity, while public key cryptography provides authentication and non-repudiation.
Incorrect because the public key infrastructure itself does not provide authentication, non-repudiation, confidentiality, or integrity.
#3. Which of the following is an incorrect benefit of virtualization?
〇:Operating system patching is easier.
This is an incorrect choice question. Virtualization does not simplify operating system patching. In fact, it complicates it by adding at least one additional operating system. Each operating system differs from the typical version configuration, adding to the complexity of patching. The server’s own operating system runs as a guest within the host environment. In addition to patching and maintaining the traditional server operating system, the virtualization software itself must be patched and maintained.
For this question, we do not require an understanding of all the technical systems of virtualization. What is required here is a selection of answers based on a process of elimination.
×:I can build a secure computing platform.
Building a secure computing platform may not be a feature of virtualization per se. However, can we build a secure environment? This is not a false choice because it cannot be ruled out.
×:It can provide fault and error containment.
Virtualization can be host independent. In terms of containment, it can be interpreted as being able to provide fault and error containment through independence from physical servers. Therefore, it cannot be denied and is therefore not an incorrect choice.
×:It can provide powerful debugging capabilities.
Virtualization can reproduce a unique environment, not just put up a clean virtual host. Therefore, it is undeniable and therefore out of the wrong choice.
#4. Which of the following correctly describes the relationship between the reference monitor and the security kernel?
〇:The security kernel implements and executes the reference monitor
The Trusted Computing Base (TCB) is a complete combination of protection mechanisms for a system. These are in the form of hardware, software, and firmware. These same components also comprise the security kernel. Reference monitors are access control concepts implemented and enforced by the security kernel via hardware, software, and firmware. In doing so, it ensures that the security kernel, the subject, has the proper permissions to access the object it is requesting. The subject, be it a program, user, or process, cannot access the requesting file, program, or resource until it is proven that it has the proper access rights.
×:The reference monitor is the core of the Trusted Computing Base (TCP), which is comprised of the security kernel.
This is incorrect because the reference monitor is not the core of the TCB. The core of the TCB is the security kernel, and the security kernel implements the concepts of the reference monitor. The reference monitor is a concept about access control. It is often referred to as an “abstract machine” because it is not a physical component.
×:The reference monitor implements and executes the security kernel.
The reference monitor does not implement and execute the security kernel, which is incorrect. On the contrary, the security kernel implements and executes the reference monitor. The reference monitor is an abstract concept, while the security kernel is a combination of hardware, software, and firmware in a trusted computing base.
×:The security kernel, i.e., the abstract machine, implements the concept of a reference monitor.
This is incorrect because abstract machine is not another name for security kernel. Abstract machine is another name for the reference monitor. This concept ensures that the abstract machine acts as an intermediary between the subject and the object, ensuring that the subject has the necessary rights to access the object it is requesting and protecting the subject from unauthorized access and modification. The security kernel functions to perform these activities.
#5. What should I use for streaming ciphers?
〇:One-time pad
Stream ciphers refer to one-time pad technology. In practice, stream ciphers cannot provide the level of protection that one-time pads do, but are practical.
×:AES
AES is incorrect because it is a symmetric block cipher. When a block cipher is used for encryption and decryption purposes, the message is divided into blocks of bits.
×:Block ciphers
Block ciphers are used for encryption and decryption purposes. The message is wrong because it is divided into blocks of bits.
×:RSA
RSA is incorrect because it is an asymmetric algorithm.
#6. Which of the following is NOT a role of the memory manager?
〇:Run an algorithm that identifies unused committed memory and informs the operating system that memory is available.
This answer describes the function of the garbage collector, not the memory manager. The garbage collector is a countermeasure against memory leaks. It is software that runs an algorithm to identify unused committed memory and tells the operating system to mark that memory as “available. Different types of garbage collectors work with different operating systems, programming languages, and algorithms.
In some cases, a four-choice question can be answered without knowing the exact answer; since there is only one correct answer in a four-choice question, the answers can be grouped together to reduce it to “since they are saying the same thing, it is not right that only one of them is correct, therefore they are both wrong.
There are two answers to the effect of controlling the process to handle memory appropriately, but if the memory manager does not have that functionality, both would be correct, and therefore can be eliminated from the choices in the first place.
×:If processes need to use the same shared memory segment, use complex controls to guarantee integrity and confidentiality.
If processes need to use the same shared memory segment, the memory manager uses complex controls to ensure integrity and confidentiality. This is important to protect memory and the data in it, since two or more processes can share access to the same segment with potentially different access rights. The memory manager also allows many users with different levels of access rights to interact with the same application running on a single memory segment.
×:Restrict processes to interact only with the memory segments allocated to them.
The memory manager is responsible for limiting the interaction of processes to only those memory segments allocated to them. This responsibility falls under the protection category and helps prevent processes from accessing segments to which they are not allowed. Another protection responsibility of the memory manager is to provide access control to memory segments.
×:Swap contents from RAM to hard drive as needed.
This is incorrect because swapping contents from RAM to hard drive as needed is the role of memory managers in the relocation category. When RAM and secondary storage are combined, they become virtual memory. The system uses the hard drive space to extend the RAM memory space. Another relocation responsibility is to provide pointers for applications when instructions and memory segments are moved to another location in main memory.
#7. Encryption provides different security depending on the procedure and & algorithm. Which of the following provides authentication, non-repudiation, and integrity?
〇:Digital Signature
A digital signature is a hash value encrypted with the sender’s private key. The act of signing means encrypting a hash value of a message with a private key. A message can be digitally signed, providing authentication, non-repudiation, and integrity. The hash function guarantees the integrity of the message, and the signature of the hash value provides authentication and non-repudiation.
×:Encryption Algorithms
Encryption algorithms are wrong because they provide confidentiality. Encryption is most commonly performed using symmetric algorithms. Symmetric algorithms can provide authentication, non-repudiation, and integrity as well as confidentiality.
×:Hash Algorithms
Hash algorithms are wrong because they provide data integrity. Hash algorithms generate a message digest, which detects whether modifications have been made (also called a hash value). The sender and receiver individually generate their own digests, and the receiver compares these values. If they differ, the receiver can know the message has been modified. Hash algorithms cannot provide authentication or non-repudiation.
×:Encryption paired with digital signatures
This is incorrect because encryption and digital signatures provide confidentiality, authentication, non-repudiation, and integrity. Encryption alone provides confidentiality. And digital signatures provide authentication, non-repudiation, and integrity. The question requires that it can provide authentication, non-repudiation, and integrity. It is a nasty question.
#8. The CA is responsible for revoking the required certificates. Which of the following adequately describes CRLs and OCSPs?
〇:OCSP is a protocol developed specifically to check CRLs during the certificate validation process.
A Certificate Authority (CA) is responsible for creating certificates, maintaining and distributing them, and revoking them when necessary. Revocation is handled by the CA and the revoked certificate information is stored in a Certificate Revocation List (CRL). This is a list of all revoked certificates. This list is maintained and updated periodically. A certificate is revoked if the key owner’s private key has been compromised, if the CA has been compromised, or if the certificate is incorrect. If a certificate is revoked for any reason, the CRL is a mechanism for others to inform you of this information. The Online Certificate Status Protocol (OCSP) uses this CRL; when using CRLs, the user’s browser must examine the CRL value to the client to see if the accreditation has been revoked or the CA is constantly checking to make sure they have an updated CRL. If OCSP is implemented, it will do this automatically in the background. It performs real-time verification of the certificate and reports back to the user whether the certificate is valid, invalid, or unknown.
×:CRL was developed as a more efficient approach to OCSP.
CRLs are often incorrect because they are a cumbersome approach; OCSP is used to deal with this tediousness; OCSP does this work in the background when using CRLs; OCSP checks the CRL to see if the certificate has been revoked by Checks.
×:OCSP is a protocol for submitting revoked certificates to CRLs.
OCSP is incorrect because it does not submit revoked certificates to the CRL; the CA is responsible for certificate creation, distribution, and maintenance.
×:CRL provides real-time validation of certificates and reports to OCSP.
Incorrect because CRL does not provide real-time validation of certificates to OCSP.
#9. Jeff would like to incorporate encryption technology into the new product. He is considering encryption methods available on the Internet. What advice should we give him?
Cryptographic algorithms refer to the calculations to be encrypted, and even if the cryptographic algorithms were publicly available, it would take an enormous amount of effort to decipher them. cryptographic algorithms that provide modern cryptography, such as AES, are publicly available. On the other hand, in-house development is not recommended because, although it has the security of concealment, it requires a great deal of resources to be allocated.
#10. Elliptic curve cryptography is an asymmetric algorithm. What are its advantages over other asymmetric algorithms?
〇:Encryption and decryption are more efficient.
Elliptic curves are rich mathematical structures that have shown usefulness in many different types of applications. Elliptic curve cryptography (ECC) differs from other asymmetric algorithms because of its efficiency; ECC is efficient because it is computationally less expensive than other asymmetric algorithms. In most cases, the longer the key, the more bloated the computation to secure it, but ECC can provide the same level of protection with a shorter key size than RSA requires.
×:Provides digital signatures, secure key distribution, and encryption.
ECC is wrong because it is not the only asymmetric algorithm that provides digital signatures, secure key distribution, and encryption provided by other asymmetric algorithms such as RSA.
×:Calculated in finite discrete logarithms.
Wrong because Diffie-Hellman and El-Gamal compute with finite discrete logarithms.
×:Uses a large percentage of resources to perform the encryption.
Incorrect because ECC when compared to other asymmetric algorithms uses much less resources. Some devices, such as wireless devices and cell phones, have limited processing power, storage, power, and bandwidth. Resource utilization efficiency is very important for the encryption methods used in this type.
#11. Which of the following is true about the key derivation function (KDF)?
〇:Keys are generated from a master key.
To generate a composite key, a master key is created and a symmetric key (subkey) is generated. The key derivation function generates the encryption key from the secret value. The secret value can be a master key, passphrase, or password. The key derivation function (KDF) generates a key for symmetric key ciphers from a given password.
×:Session keys are generated from each other.
Session keys are generated from each other, not from the master key, which is incorrect.
×:Asymmetric ciphers are used to encrypt symmetric keys.
It is incorrect because key encryption is not even related to the key derivation function (KDF).
×:The master key is generated from the session key.
Reverse, incorrect. Session keys are generally generated from master keys.
#12. Several steps must be taken before an effective physical security program can be rolled out. Which of the following steps comes first in the process of rolling out a security program?
〇:Conduct a risk analysis.
The first step in the procedure described, which is the first step to be taken only to deploy an effective physical security program, is to conduct a risk analysis to identify vulnerabilities and threats and to calculate the business impact of each threat. The team presents the results of the risk analysis to management to define an acceptable risk level for the physical security program. From there, the team evaluates and determines if the baseline is met by implementation. Once the team identifies its responses and implements the measures, performance is continually evaluated. These performances will be compared to the established baselines. If the baseline is maintained on an ongoing basis, the security program is successful because it does not exceed the company’s acceptable risk level.
×:Create a performance metric for the countermeasure.
The procedure to create a countermeasure performance metric is incorrect because it is not the first step in creating a physical security program. If monitored on a performance basis, it can be used to determine how beneficial and effective the program is. It allows management to make business decisions when investing in physical security protection for the organization. The goal is to improve the performance of the physical security program, leading to a cost-effective way to reduce the company’s risk. You should establish a performance baseline and then continually evaluate performance to ensure that the firm’s protection goals are being met. Examples of possible performance metrics include: number of successful attacks, number of successful attacks, and time taken for attacks.
×:Design program.
Designing the program is wrong because it should be done after the risk analysis. Once the level of risk is understood, then the design phase can be done to protect against the threats identified in the risk analysis. The design of deterrents, delays, detections, assessments, and responses will incorporate the necessary controls for each category of the program.
×:Implement countermeasures.
Wrong because implementing countermeasures is one of the last steps in the process of deploying a physical security program.
#13. Which of the following is an axiom of access control to ensure that rewriting a supervisor’s document does not release incorrect information to the supervisor?
〇:* (star) Integrity Property
The Biba model defines a model with completeness as having two axioms. The * (star) Integrity Property is that the subordinate’s document is to be seen and there is no Read Down. The * (star) Integrity Property is that there is no Write Up, that is, no rewriting of the supervisor’s document. If the Simple Integrity Axiom is not followed, the subordinate’s document will be seen and may absorb unclassified and incorrect information at a lower level. If the * (star) Integrity Property is not followed, a supervisor’s document will be rewritten, which will release incorrect information to the supervisor who sees it. Therefore, both are integrity conditions.
×:Simple Integrity Property
The Simple Integrity Property is a constraint on Read Down.
×:Strong Tranquillity Axiom
The Strong Tranquillity Axiom is the constraint not to change permissions while the system is running.
×:Weak Tranquillity Axiom
Weak Tranquillity Axiom means do not change privileges until the attribute is inconsistent.
#14. Which security architecture model defines how to securely develop access rights between subjects and objects?
〇:Graham-Denning Model
The Graham-Denning model addresses how access rights between subjects and objects are defined, developed, and integrated. It defines a basic set of rights in terms of the commands that a particular subject can execute on an object. The model has eight basic protective rights or rules on how to safely perform these types of functions
×:Brewer-Nash Model
It is incorrect because its purpose is to provide access control that can be changed dynamically according to the user’s previous actions. The main purpose is to protect against conflicts of interest due to user access attempts. For example, if a large marketing firm provides marketing promotions and materials for two banks, the employee responsible for the Bank A project should not be able to see information about Bank B, the marketing firm’s other bank customer. A conflict of interest could arise because the banks are competitors. If the project manager of the marketing firm’s Project A can see information about Bank B’s new marketing campaign, he may attempt to execute it rather than promote it to please more direct customers. Marketing firms have a bad reputation when internal employees can act irresponsibly.
×:Clark-Wilson Model
The Clark-Wilson model is incorrect because it is implemented to protect data integrity and ensure that transactions are properly formatted within the application. Subjects can only access objects through authorized programs. Segregation of duties is enforced. Auditing is required. The Clark-Wilson model addresses three integrity goals: preventing changes by unauthorized users, preventing inappropriate changes by unauthorized users, and maintaining internal and external consistency.
×:Bell-LaPadula Model
This model was developed to address concerns about the security of U.S. military systems and the leakage of classified information, and is incorrect. The primary goal of the model is to prevent unauthorized access to classified information. It is a state machine model that enforces the confidentiality aspect of access control. Matrices and security levels are used to determine if a subject has access to different objects. Specific rules are applied to control how objects interact with each other compared to the subject’s object classification.
#15. We are looking to move to a cloud-based solution to eliminate the increasing cost of maintaining our own server network environment. Which of the following is the correct definition and mapping of a typical cloud-based solution to choose?
〇:The cloud provider is provided a platform as a service that provides a computing platform that may include an operating system, database, and web servers.
Cloud computing is a term used to describe the aggregation of network and server technologies, each virtualized, to provide customers with a specific computing environment that matches their needs. This centralized control provides end users with self-service, broad access across multiple devices, resource pooling, rapid elasticity, and service monitoring capabilities.
There are different types of cloud computing products: IaaS provides virtualized servers in the cloud; PaaS allows applications to be developed individually; SaaS allows service providers to deploy services with no development required and with a choice of functionality; and IaaS allows customers to choose the type of service they want to use. ” The term “PaaS” must fit the definition of “PaaS” because it requires that “the original application configuration remains the same”. Thus, the correct answer is, “The cloud provider provides a computing platform that may include an operating system, database, and web server, where the platform as a service is provided.” The following is the correct answer
×:The cloud provider is provided with an infrastructure as a service that provides a computing platform that can include an operating system, database, and web servers.
IaaS Description.
×:The cloud provider is provided with software services that provide an infrastructure environment similar to that of a traditional data center.
This is a description of the operational benefits of cloud computing. It is not a definition.
×:The cloud provider provides software as a service in a computing platform environment where application functionality is internalized.
SaaS Description.
#16. Insider trading can occur through the unintentional transmission of information. Which of the following access control models is most appropriate to prepare for such an eventuality?
〇:Brewer-Nash Model
The Chinese Wall Model is a security model that focuses on the flow of information within an organization, such as insider trading. Insider trading occurs when inside information leaks to the outside world. In reality, information can spread to unexpected places as it is passed on orally to unrelated parties. In order to take such information flow into account, access privileges are determined in a simulation-like manner. Therefore, the correct answer is the “Chinese Wall Model (Brewer-Nash Model).
×:Lattice-based Access Control
Lattice-based access control is to assume that a single entity can have multiple access rights and to consider access control as all possible relationships under a certain condition.
×:Biba Model
The Biba model is a security model that indicates that data cannot be changed without permission.
×:Harrison-Ruzzo-Ullman Model
The Harrison-Ruzzo-Ullman model is a model that aggregates the eight rules of the Graham-Denning model into six rules using an access control matrix.
#17. Which of the following is the most difficult to discover keys among known-plaintext attacks, selective-plaintext attacks, and adaptive-selective-plaintext attacks?
〇:Known Plaintext Attacks
A known-plaintext attack is a situation in which a decryptor can obtain plaintext indiscriminately. A ciphertext-alone attack is a situation where a decryptor can acquire ciphertext indiscriminately. A known-plaintext attack acquires the plaintext but does not know what ciphertext it is paired with, meaning that decryption is attempted with only two random ciphertexts. In this situation, it is difficult to decrypt. Therefore, the correct answer is “known-plaintext attack.
×:Selective Plaintext Attack
A choice-plaintext attack is a situation in which the decryptor can freely choose the plaintext to acquire and obtain the ciphertext.
×:Adaptive Choice Plaintext Attack
An adaptive choice-plaintext attack is a situation in which the decryptor can freely choose which plaintext to acquire and acquire the ciphertext, and can repeat the acquisition again after seeing the result.
×:None of the above
It is rare for the answer to be “none of the above” when the choice is “most of the above.
#18. Which of the following is the appropriate method of creating a digital signature?
〇:The sender encrypts the message digest with his/her private key.
A digital signature is a hash value encrypted with the sender’s private key. The act of digitally signing means encrypting the hash value of the message with his/her private key. The sender would encrypt that hash value using her private key. When the recipient receives the message, she performs a hash function on the message and generates the hash value herself. She then decrypts the hash value (digital signature) sent with the sender’s public key. The receiver compares the two values and, if they are the same, can verify that the message was not altered during transmission.
×:The sender encrypts the message digest with his/her public key.
The sender is wrong because if the message encrypts the digest with his/her public key, the recipient cannot decrypt it. The recipient needs access to the sender’s private key, which must not occur. The private key must always be kept secret.
×:The receiver encrypts the message digest with his/her private key.
The receiver is wrong because the message must decrypt the digest with the sender’s public key. The message digest is encrypted with the sender’s private key, which can only be decrypted with the sender’s public key.
×:The receiver encrypts the message digest with his/her public key.
The receiver is wrong because the message must decrypt the digest with the sender’s public key. The message digest is encrypted with the sender’s private key, which can only be decrypted with the sender’s public key.
#19. Which of the following problems are caused by the hash collision phenomenon?
A collision is when the hash value of two different data from one hash function is the same. Hashing is one-way cryptography, which means that the original plaintext is no longer known to be one or the other.
#20. Which of the following is a drawback of the symmetric key system?
〇:Keys will need to be distributed via a secure transmission channel.
For two users to exchange messages encrypted with a symmetric algorithm, they need to figure out how to distribute the key first. If the key is compromised, all messages encrypted with that key can be decrypted and read by an intruder. Simply sending the key in an email message is not secure because the key is not protected and can easily be intercepted and used by an attacker.
×:Computation is more intensive than in asymmetric systems.
That is incorrect because it describes the advantages of symmetric algorithms. Symmetric algorithms tend to be very fast because they are less computationally intensive than asymmetric algorithms. They can encrypt and decrypt relatively quickly large amounts of data that take an unacceptable amount of time to encrypt and decrypt with asymmetric algorithms.
×:Much faster operation than asymmetric systems
Symmetric algorithms are faster than asymmetric systems, but this is an advantage. Therefore, it is incorrect.
×:Mathematically intensive tasks must be performed
Asymmetric algorithms are wrong because they perform a mathematically intensive task. Symmetric algorithms, on the other hand, perform relatively simple mathematical functions on bits during the encryption and decryption process.




