Domain 3 Exam.
A minimum of 70% is required to pass.
#1. TLS is a protocol used to protect transactions that occur over an untrusted network. Which of the following is an appropriate description of what takes place during the setup process of a TLS connection?
〇:The client generates a session key and encrypts it with a public key.
Transport Layer Security (TLS) uses public key cryptography to provide data encryption, server authentication, message integrity, and optionally client authentication. When a client accesses a cryptographically protected page, the web server initiates TLS and begins the process of securing subsequent communications. The server performs a three-handshake to establish a secure session. After that, client authentication with a digital certificate, as the case may be, comes in. The client then generates a session key, encrypts it with the server’s public key, and shares it. This session key is used as the symmetric key for encrypting the data to be transmitted thereafter. Thus, the correct answer is: “The client generates a session key and encrypts it with the public key.” will be
×:The server generates the session key and encrypts it with the public key.
The server does not encrypt with the public key.
×:The server generates a session key and encrypts it with the private key.
Even if encryption is performed from the server side, it can be decrypted with the public key, so it is not structurally possible.
×:The client generates a session key and encrypts it with its private key.
The client side does not have the private key.
#2. Which of the following is the appropriate method of creating a digital signature?
〇:The sender encrypts the message digest with his/her private key.
A digital signature is a hash value encrypted with the sender’s private key. The act of digitally signing means encrypting the hash value of the message with his/her private key. The sender would encrypt that hash value using her private key. When the recipient receives the message, she performs a hash function on the message and generates the hash value herself. She then decrypts the hash value (digital signature) sent with the sender’s public key. The receiver compares the two values and, if they are the same, can verify that the message was not altered during transmission.
×:The sender encrypts the message digest with his/her public key.
The sender is wrong because if the message encrypts the digest with his/her public key, the recipient cannot decrypt it. The recipient needs access to the sender’s private key, which must not occur. The private key must always be kept secret.
×:The receiver encrypts the message digest with his/her private key.
The receiver is wrong because the message must decrypt the digest with the sender’s public key. The message digest is encrypted with the sender’s private key, which can only be decrypted with the sender’s public key.
×:The receiver encrypts the message digest with his/her public key.
The receiver is wrong because the message must decrypt the digest with the sender’s public key. The message digest is encrypted with the sender’s private key, which can only be decrypted with the sender’s public key.
#3. Which of the following is a common association of the Clark-Wilson access model?
〇:Well-Formed Transaction
In the Clark-Wilson model, subjects cannot access objects without going through some type of application or program that controls how this access is done. The subject (usually the user) can access the required object based on access rules within the application software, defined as “Well-Formed Transaction,” in conjunction with the application.
×:Childwall model
This is incorrect because it is another name for the Brewer Nash model created to provide access control that can be dynamically modified according to the user’s previous behavior. It is shaped by access attempts and conflicts of interest and does not allow information to flow between subjects and objects. In this model, a subject can only write to an object if the subject cannot read another object in a different data set.
×:Access tuples
The Clark-Wilson model is incorrect because it uses access triples instead of access tuples. The access triple is the subject program object. This ensures that the subject can only access the object through the authorized program.
×:Write Up and Write Down
The Clark-Wilson model is incorrect because there is no Write Up and Write Down. These rules relate to the Bell-LaPadula and Biba models. The Bell-LaPadula model contains a simple security rule that has not been read and a star property rule that has not been written down. The Biba model contains an unread simple completeness axiom and an unwritten star completeness axiom.
#4. Sally has performed software analysis against her company’s proprietary applications. She has found that it is possible to force an authentication step to take place before the attacker has successfully completed the authentication procedure. What could be the cause?
〇:Conflict condition
A race condition is present when a process performs a task on a shared resource and the sequence could be in the wrong order. 2 or more processes can have a race condition if they use a shared resource, like data in a variable. It is important that processes perform their functions in the correct sequence.
×:Backdoors
Backdoors are incorrect because they are “listening” services on certain ports. Backdoors are implemented by attackers to allow easy access to the system without authenticating as a normal system user.
×:Maintenance Hooks
Maintenance hooks are specific software codes that allow easy and unauthorized access to sensitive parts of a software product. Software programmers use maintenance hooks to allow them to get quick access to the code so that they can make fixes in immediate, but this is dangerous.
×:Data validation errors
Data validation errors are wrong because an attacker cannot operate on the process execution sequence.
#5. We are looking to move to a cloud-based solution to eliminate the increasing cost of maintaining our own server network environment. Which of the following is the correct definition and mapping of a typical cloud-based solution to choose?
〇:The cloud provider is provided a platform as a service that provides a computing platform that may include an operating system, database, and web servers.
Cloud computing is a term used to describe the aggregation of network and server technologies, each virtualized, to provide customers with a specific computing environment that matches their needs. This centralized control provides end users with self-service, broad access across multiple devices, resource pooling, rapid elasticity, and service monitoring capabilities.
There are different types of cloud computing products: IaaS provides virtualized servers in the cloud; PaaS allows applications to be developed individually; SaaS allows service providers to deploy services with no development required and with a choice of functionality; and IaaS allows customers to choose the type of service they want to use. ” The term “PaaS” must fit the definition of “PaaS” because it requires that “the original application configuration remains the same”. Thus, the correct answer is, “The cloud provider provides a computing platform that may include an operating system, database, and web server, where the platform as a service is provided.” The following is the correct answer
×:The cloud provider is provided with an infrastructure as a service that provides a computing platform that can include an operating system, database, and web servers.
IaaS Description.
×:The cloud provider is provided with software services that provide an infrastructure environment similar to that of a traditional data center.
This is a description of the operational benefits of cloud computing. It is not a definition.
×:The cloud provider provides software as a service in a computing platform environment where application functionality is internalized.
SaaS Description.
#6. Which microprocessor technology has also been linked to facilitating certain attacks?
〇:Increased Processing Power
The increased processing power of personal computers and servers has increased the probability of successful brute force and cracking attacks against security mechanisms that were not feasible a few years ago. Today’s processors can execute an incredible number of instructions per second. These instructions can be used to break passwords, encryption keys, or direct malicious packets to be sent to the victim’s system.
×:Increased circuitry, cache memory, and multiprogramming
This is incorrect because an increase does not make a particular type of attack more powerful. Multiprogramming means loading multiple programs or processes into memory at the same time. It allows antivirus software, word processors, firewalls, and e-mail clients to run simultaneously. Cache memory is a type of memory used for fast write and read operations. If the system expects that the program logic will need to access certain information many times during processing, the information is stored in cache memory for easy and quick access.
×:Dual-mode computation
The answer is not specific and does not measure conformance to the problem. When examining microprocessor advances, there is no actual dual-mode calculation.
×:Direct Memory Access I/O
Incorrect because this method transfers instructions and data between I/O (input/output) devices and the system’s memory without using the CPU. Direct Memory Access I/O significantly increases data transfer speed.
#7. Which of the following is the most difficult to discover keys among known-plaintext attacks, selective-plaintext attacks, and adaptive-selective-plaintext attacks?
〇:Known Plaintext Attacks
A known-plaintext attack is a situation in which a decryptor can obtain plaintext indiscriminately. A ciphertext-alone attack is a situation where a decryptor can acquire ciphertext indiscriminately. A known-plaintext attack acquires the plaintext but does not know what ciphertext it is paired with, meaning that decryption is attempted with only two random ciphertexts. In this situation, it is difficult to decrypt. Therefore, the correct answer is “known-plaintext attack.
×:Selective Plaintext Attack
A choice-plaintext attack is a situation in which the decryptor can freely choose the plaintext to acquire and obtain the ciphertext.
×:Adaptive Choice Plaintext Attack
An adaptive choice-plaintext attack is a situation in which the decryptor can freely choose which plaintext to acquire and acquire the ciphertext, and can repeat the acquisition again after seeing the result.
×:None of the above
It is rare for the answer to be “none of the above” when the choice is “most of the above.
#8. Which of the following events occurs in a PKI environment?
〇:CA signs certificates.
A Certificate Authority (CA) is a trusted agency (or server) that maintains digital certificates. When a certificate is requested, the Registration Authority (RA) verifies the identity of the individual and passes the certificate request to the CA The CA creates the certificate, signs it, and maintains the certificate over its lifetime.
×:RA creates the certificate and CA signs it.
Incorrect because the RA does not create the certificate; the CA creates it and signs it; the RA performs authentication and registration tasks; establishes the RA, verifies the identity of the individual requesting the certificate, initiates the authentication process to the CA on behalf of the end user, and performs certificate life cycle RAs cannot issue certificates, but can act as a broker between the user and the CA When a user needs a new certificate, they make a request to the RA and the RA goes to the CA to verify all necessary identification before granting the request The RA verifies all necessary identification information before granting the request.
×:RA signs certificates.
The RA signs the certificate, which is incorrect because the RA does not sign the certificate; the CA signs the certificate; the RA verifies the user’s identifying information and then sends the certificate request to the CA.
×:The user signs the certificate.
Incorrect because the user has not signed the certificate; in a PKI environment, the user’s certificate is created and signed by the CA. The CA is a trusted third party that generates the user certificate holding its public key.
#9. Encryption provides different security depending on the procedure and & algorithm. Which of the following provides authentication, non-repudiation, and integrity?
〇:Digital Signature
A digital signature is a hash value encrypted with the sender’s private key. The act of signing means encrypting a hash value of a message with a private key. A message can be digitally signed, providing authentication, non-repudiation, and integrity. The hash function guarantees the integrity of the message, and the signature of the hash value provides authentication and non-repudiation.
×:Encryption Algorithms
Encryption algorithms are wrong because they provide confidentiality. Encryption is most commonly performed using symmetric algorithms. Symmetric algorithms can provide authentication, non-repudiation, and integrity as well as confidentiality.
×:Hash Algorithms
Hash algorithms are wrong because they provide data integrity. Hash algorithms generate a message digest, which detects whether modifications have been made (also called a hash value). The sender and receiver individually generate their own digests, and the receiver compares these values. If they differ, the receiver can know the message has been modified. Hash algorithms cannot provide authentication or non-repudiation.
×:Encryption paired with digital signatures
This is incorrect because encryption and digital signatures provide confidentiality, authentication, non-repudiation, and integrity. Encryption alone provides confidentiality. And digital signatures provide authentication, non-repudiation, and integrity. The question requires that it can provide authentication, non-repudiation, and integrity. It is a nasty question.
#10. Which of the following is a drawback of the symmetric key system?
〇:Keys will need to be distributed via a secure transmission channel.
For two users to exchange messages encrypted with a symmetric algorithm, they need to figure out how to distribute the key first. If the key is compromised, all messages encrypted with that key can be decrypted and read by an intruder. Simply sending the key in an email message is not secure because the key is not protected and can easily be intercepted and used by an attacker.
×:Computation is more intensive than in asymmetric systems.
That is incorrect because it describes the advantages of symmetric algorithms. Symmetric algorithms tend to be very fast because they are less computationally intensive than asymmetric algorithms. They can encrypt and decrypt relatively quickly large amounts of data that take an unacceptable amount of time to encrypt and decrypt with asymmetric algorithms.
×:Much faster operation than asymmetric systems
Symmetric algorithms are faster than asymmetric systems, but this is an advantage. Therefore, it is incorrect.
×:Mathematically intensive tasks must be performed
Asymmetric algorithms are wrong because they perform a mathematically intensive task. Symmetric algorithms, on the other hand, perform relatively simple mathematical functions on bits during the encryption and decryption process.
#11. What are the advantages of depositing cryptographic keys with another organization?
A key escrow system is one in which a third-party organization holds a copy of the public/private key pair. If the private key is stolen, all ciphers can be decrypted. Conversely, if it is lost, all ciphers cannot be decrypted. Therefore, you want to have a copy. However, if you have it yourself, it may be stolen if a break-in occurs, so you leave it with a third-party organization.
#12. Sally is responsible for managing the keys in her organization. Which of the following is incorrect as secure key management?
〇:The expiration date should be set short.
Key management is critical for proper protection. Part of key management is to determine the key’s period of validity, which would be determined by the sensitivity of the data being protected. For sensitive data, periodic key changes are required and the key’s expiration date will be shortened. On the other hand, for less secure data, a key with a longer expiration date is not a problem.
×:Keys should be deposited in case of backup or emergency.
This is incorrect because it is true that keys must be deposited in the event of a backup or emergency situation. Keys are at risk of being lost, destroyed or damaged. Backup copies must be available and readily accessible when needed.
×:Keys must not be made public.
Of course. It is a key.
×:Keys should be stored and transmitted by secure means.
Wrong, since it is true that keys should be stored and transmitted by secure means. Keys are stored before and after distribution. If keys are distributed to users, they must be stored in a secure location in the file system and used in a controlled manner.
#13. According to the Kerckhoffs’s principle, which of the following should not leak?
The Kerckhoffs’s principle is the idea that cryptography should be secure even if everything but the private key is known. When encrypting data, one decides on a private key and how to encrypt it using that private key. Kerckhoffs says that even if it is known how it is encrypted, it should not be deciphered as long as the secret key is not discovered. Encryption has been with the history of human warfare. The main purpose is to communicate a strategy to one’s allies without being discovered by the enemy. In battle, its designs and encryption devices may be stolen by spies. Therefore, the encryption must be such that it cannot be solved without the key, no matter how much is known about how it works.
#14. Which of the following best describes the difference between a firewall embedded in a hypervisor and a virtual firewall operating in bridge mode?
〇:A virtual firewall in bridge mode allows the firewall to monitor individual traffic links, while a firewall integrated into the hypervisor can monitor all activity taking place within the host system.
Virtual firewalls can be bridge-mode products that monitor individual communication links between virtual machines. They can also be integrated within a hypervisor in a virtual environment. The hypervisor is the software component that manages the virtual machines and monitors the execution of guest system software. When a firewall is embedded within the hypervisor, it can monitor all activities that occur within the host system.
×:A virtual firewall in bridge mode allows the firewall to monitor individual network links, while a firewall integrated into the hypervisor can monitor all activities taking place within the guest system.
A virtual firewall in bridge mode is incorrect because the firewall can monitor individual traffic links between hosts and not network links. Hypervisor integration allows the firewall to monitor all activities taking place within the guest system rather than the host system.
×:A virtual firewall in bridge mode allows the firewall to monitor individual traffic links, while a firewall integrated into the hypervisor can monitor all activities taking place within the guest system.
A virtual firewall in bridge mode is wrong because the firewall can monitor individual traffic links, and the hypervisor integration allows the firewall to monitor all activity taking place within the host system, but not the guest system. The hypervisor is the software component that manages the virtual machines and monitors the execution of the guest system software. A firewall, when embedded within the hypervisor, can monitor all activities taking place within the system.
×:A virtual firewall in bridge mode allows the firewall to monitor individual guest systems, while a firewall integrated into the hypervisor can monitor all activities taking place within the network system.
A virtual firewall in bridge mode allows the firewall to monitor individual traffic between guest systems, and a hypervisor integrated allows the firewall to monitor all activity taking place within the host system, not the network system, so Wrong.
#15. I saw a news report about encryption technology being deciphered by the development of quantum computers. What do you call the phenomenon of existing encryption being deciphered as the computational power of computers improves?
Compromise is when what used to be secure encryption becomes insecure due to the evolution of computers. Cryptography is based on the sharing of a single answer, a key, among those communicating. The key is generated by computer calculations, and a third party must solve a difficult problem that would take several years to derive. However, as the computational power of computers has evolved, it is now possible to solve difficult problems that could not be solved before. In this case, encryption is meaningless. This is the compromise caused by evolution. Therefore, the correct answer is “Compromise.
#16. Which of the following is an incorrect description of steganography?
〇:The most common method used is to change the most significant bit.
Steganography is a method of hiding data in other media types. One of the most common ways to embed messages in some types of media is using the least significant bit (LSB). This is because many types of files are modified and this is where sensitive data can be made visible and hidden without modifying the file. the LSB approach has been successful in hiding information within the graphics of high-resolution or sound-heavy audio files (high bit rate).
×:Hiding by abstraction.
Steganography is incorrect because it is concealment by abstraction. Security by obscurity means that someone uses secrecy as a way to protect an asset, rather than actually using the measure to secure something.
×:Just as encryption does, steganography is not a front for the existence of the sensitive data itself.
It is true that steganography does not draw attention to itself as does encryption. In other words, it is concealment by abstraction.
×:Media files are ideal for steganographic transmissions that are large in size.
This is incorrect because it is true that larger media files are ideal for steganographic transmissions because everyone needs to privately use multiple bits to manipulate with low likelihood of noticing.
#17. You have been instructed to report to the Board of Directors with a vendor-neutral enterprise architecture framework that will help reduce fragmentation due to inconsistencies between IT and business processes. Which of the following frameworks should you propose?
〇:TOGAF
The Open Group Architecture Framework (TOGAF) is a vendor-independent platform for the development and implementation of enterprise architecture. It focuses on the effective management of enterprise data using metamodels and service-oriented architectures (SOA). Proficient implementations of TOGAF aim to reduce fragmentation caused by inconsistencies between traditional IT systems and actual business processes. It also coordinates new changes and functionality so that new changes can be easily integrated into the enterprise platform.
×:Department of Defense Architecture Framework (DoDAF)
In accordance with the guidelines for the organization of the enterprise architecture of the U.S. Department of Defense systems, this is incorrect. It is also suitable for large, complex integrated systems in the military, civilian, and public sectors.
×:Capability Maturity Model Integration (CMMI) during software development.
It is inappropriate because it is a framework for the purpose of designing and further improving software. CMMI provides a standard for software development processes that can measure the maturity of the development process.
×:ISO/IEC 42010
Incorrect because it consists of recommended practices to simplify the design and conception of software-intensive system architectures. This standard provides a kind of language (terminology) to describe the different components of software architecture and how to integrate it into the development life cycle.
#18. Which of the following is an axiom of access control to ensure that rewriting a supervisor’s document does not release incorrect information to the supervisor?
〇:* (star) Integrity Property
The Biba model defines a model with completeness as having two axioms. The * (star) Integrity Property is that the subordinate’s document is to be seen and there is no Read Down. The * (star) Integrity Property is that there is no Write Up, that is, no rewriting of the supervisor’s document. If the Simple Integrity Axiom is not followed, the subordinate’s document will be seen and may absorb unclassified and incorrect information at a lower level. If the * (star) Integrity Property is not followed, a supervisor’s document will be rewritten, which will release incorrect information to the supervisor who sees it. Therefore, both are integrity conditions.
×:Simple Integrity Property
The Simple Integrity Property is a constraint on Read Down.
×:Strong Tranquillity Axiom
The Strong Tranquillity Axiom is the constraint not to change permissions while the system is running.
×:Weak Tranquillity Axiom
Weak Tranquillity Axiom means do not change privileges until the attribute is inconsistent.
#19. Similar to logical access control, audit logs should also be generated and monitored for physical access control. Which of the following statements is true regarding auditing physical access?
〇:All failed access attempts should be logged and reviewed.
The physical access control system may use software and auditing capabilities to generate an audit trail or access log associated with access attempts. The date and time of the entry point when access was attempted, the user ID used when access was attempted, and any failed access attempts, among others, should be recorded.
×:Failed access attempts are recorded and only security personnel are entitled to review them.
Unless someone actually reviews them, the access logs are as useless as the audit logs generated by the computer. Security guards should review these logs, but security professionals and facility managers should review these logs on a regular basis. The administrator must know the existence and location of entry points into the facility.
×:Only successful access attempts should be logged and reviewed.
Wrong, as unsuccessful access attempts should be logged and reviewed. Audit should be able to alert you to suspicious activity even though you are denying an entity access to a network, computer, or location.
×:Failed access attempts outside of business hours should be logged and reviewed.
Incorrect, as all unauthorized access attempts should be logged and reviewed regardless. Unauthorized access can occur at any time.




