Practice Test(DOMAIN3)

CISSP総合学習サイト

Domain 3 Exam.

A minimum of 70% is required to pass.

 

Results

Wonderful!

There may be content you haven’t seen yet.

#1. Lacy’s manager assigned her to research intrusion detection systems for the new dispatching center. Lacey identifies the top five products and compares their ratings. Which of the following is the most used evaluation criteria framework today for this purpose?

〇:Common Criteria

Common Criteria was created in the early 1990s as a way to combine the strengths of both the Trustworthy Computer Systems Evaluation Criteria (TCSEC) and the Information Technology Security Evaluation Criteria (ITSEC) and eliminate their weaknesses. Common Criteria is more flexible than TCSEC and easier than ITSEC. Common Criteria is recognized worldwide and assists consumers by reducing the complexity of assessments and eliminating the need to understand the definitions and meanings of different assessments in different assessment schemes. This also helps manufacturers because they can now build a specific set of requirements when they want to market their products internationally, rather than having to meet several different evaluation criteria under different rules and requirements.

 

×:ITSEC

This is incorrect because it is not the most widely used information technology security evaluation standard. ITSEC was the first attempt to establish a single standard for evaluating the security attributes of computer systems and products in many European countries. In addition, ITSEC separates functionality and assurance in its evaluations, giving each a separate rating. It was developed to provide greater flexibility than TCSEC and addresses integrity, availability, and confidentiality in networked systems. The goal of ITSEC was to become the global standard for product evaluation, but it failed to achieve that goal and was replaced by Common Criteria.

 

×:Red Book

Wrong, as it is a U.S. government publication that addresses the topic of security evaluation of networks and network components. Formally titled Trusted Network Interpretation, it provides a framework for protecting different types of networks. Subjects accessing objects on the network must be controlled, monitored, and audited.

 

×:Orange Book

Incorrect as this is a U.S. Government publication that addresses government and military requirements and expectations for operating systems. The Orange Book is used to evaluate whether a product is suitable for the security characteristics and specific applications or functions required by the vendor. The Orange Book is used to review the functionality, effectiveness, and assurance of the product under evaluation, using classes designed to address typical patterns of security requirements. It provides a broad framework for building and evaluating trusted systems, with an emphasis on controlling which users have access to the system. We call it the Orange Book, but another name for it is Trusted Computer System Evaluation Criteria (TCSEC).

#2. Which of the following best describes the difference between a firewall embedded in a hypervisor and a virtual firewall operating in bridge mode?

〇:A virtual firewall in bridge mode allows the firewall to monitor individual traffic links, while a firewall integrated into the hypervisor can monitor all activity taking place within the host system.

Virtual firewalls can be bridge-mode products that monitor individual communication links between virtual machines. They can also be integrated within a hypervisor in a virtual environment. The hypervisor is the software component that manages the virtual machines and monitors the execution of guest system software. When a firewall is embedded within the hypervisor, it can monitor all activities that occur within the host system.

 

×:A virtual firewall in bridge mode allows the firewall to monitor individual network links, while a firewall integrated into the hypervisor can monitor all activities taking place within the guest system.

A virtual firewall in bridge mode is incorrect because the firewall can monitor individual traffic links between hosts and not network links. Hypervisor integration allows the firewall to monitor all activities taking place within the guest system rather than the host system.

 

×:A virtual firewall in bridge mode allows the firewall to monitor individual traffic links, while a firewall integrated into the hypervisor can monitor all activities taking place within the guest system.

A virtual firewall in bridge mode is wrong because the firewall can monitor individual traffic links, and the hypervisor integration allows the firewall to monitor all activity taking place within the host system, but not the guest system. The hypervisor is the software component that manages the virtual machines and monitors the execution of the guest system software. A firewall, when embedded within the hypervisor, can monitor all activities taking place within the system.

 

×:A virtual firewall in bridge mode allows the firewall to monitor individual guest systems, while a firewall integrated into the hypervisor can monitor all activities taking place within the network system.

A virtual firewall in bridge mode allows the firewall to monitor individual traffic between guest systems, and a hypervisor integrated allows the firewall to monitor all activity taking place within the host system, not the network system, so Wrong.

#3. Jeff would like to incorporate encryption technology into the new product. He is considering encryption methods available on the Internet. What advice should we give him?

Cryptographic algorithms refer to the calculations to be encrypted, and even if the cryptographic algorithms were publicly available, it would take an enormous amount of effort to decipher them. cryptographic algorithms that provide modern cryptography, such as AES, are publicly available. On the other hand, in-house development is not recommended because, although it has the security of concealment, it requires a great deal of resources to be allocated.

#4. Which security architecture model defines how to securely develop access rights between subjects and objects?

〇:Graham-Denning Model

The Graham-Denning model addresses how access rights between subjects and objects are defined, developed, and integrated. It defines a basic set of rights in terms of the commands that a particular subject can execute on an object. The model has eight basic protective rights or rules on how to safely perform these types of functions

 

×:Brewer-Nash Model

It is incorrect because its purpose is to provide access control that can be changed dynamically according to the user’s previous actions. The main purpose is to protect against conflicts of interest due to user access attempts. For example, if a large marketing firm provides marketing promotions and materials for two banks, the employee responsible for the Bank A project should not be able to see information about Bank B, the marketing firm’s other bank customer. A conflict of interest could arise because the banks are competitors. If the project manager of the marketing firm’s Project A can see information about Bank B’s new marketing campaign, he may attempt to execute it rather than promote it to please more direct customers. Marketing firms have a bad reputation when internal employees can act irresponsibly.

 

×:Clark-Wilson Model

The Clark-Wilson model is incorrect because it is implemented to protect data integrity and ensure that transactions are properly formatted within the application. Subjects can only access objects through authorized programs. Segregation of duties is enforced. Auditing is required. The Clark-Wilson model addresses three integrity goals: preventing changes by unauthorized users, preventing inappropriate changes by unauthorized users, and maintaining internal and external consistency.

 

×:Bell-LaPadula Model

This model was developed to address concerns about the security of U.S. military systems and the leakage of classified information, and is incorrect. The primary goal of the model is to prevent unauthorized access to classified information. It is a state machine model that enforces the confidentiality aspect of access control. Matrices and security levels are used to determine if a subject has access to different objects. Specific rules are applied to control how objects interact with each other compared to the subject’s object classification.

#5. Which is the difference between public key cryptography and public key infrastructure?

〇:Public key infrastructure is a mechanism configuration for public key cryptographic distribution, and public key cryptography is another name for asymmetric encryption.

Public key cryptography is asymmetric cryptography. The terms are used interchangeably. Public key cryptography is a concept within the Public Key Infrastructure (PKI), which consists of various parts such as Certificate Authorities, Registration Authorities, certificates, keys, programs, and users. Public Key Infrastructure is used to identify and create users, distribute and maintain certificates, revoke and distribute certificates, maintain encryption keys, and for the purpose of encrypted communication and authentication.

 

×:Public key infrastructure uses symmetric algorithms and public key cryptography uses asymmetric algorithms.

This is incorrect because the public key infrastructure uses a hybrid system of symmetric and asymmetric key algorithms and methods. Public key cryptography is to use asymmetric algorithms. Therefore, asymmetric and public key cryptography are interchangeable, meaning they are the same. Examples of asymmetric algorithms are RSA, elliptic curve cryptography (ECC), Diffie-Hellman, and El Gamal.

 

×:Public key infrastructure is used to perform key exchange, while public key cryptography is used to create public/private key pairs.

This is incorrect because public key cryptography is the use of asymmetric algorithms used to create public/private key pairs, perform key exchange, and generate and verify digital signatures.

 

×:Public key infrastructure provides confidentiality and integrity, while public key cryptography provides authentication and non-repudiation.

Incorrect because the public key infrastructure itself does not provide authentication, non-repudiation, confidentiality, or integrity.

#6. Similar to logical access control, audit logs should also be generated and monitored for physical access control. Which of the following statements is true regarding auditing physical access?

〇:All failed access attempts should be logged and reviewed.

The physical access control system may use software and auditing capabilities to generate an audit trail or access log associated with access attempts. The date and time of the entry point when access was attempted, the user ID used when access was attempted, and any failed access attempts, among others, should be recorded.

 

×:Failed access attempts are recorded and only security personnel are entitled to review them.

Unless someone actually reviews them, the access logs are as useless as the audit logs generated by the computer. Security guards should review these logs, but security professionals and facility managers should review these logs on a regular basis. The administrator must know the existence and location of entry points into the facility.

 

×:Only successful access attempts should be logged and reviewed.

Wrong, as unsuccessful access attempts should be logged and reviewed. Audit should be able to alert you to suspicious activity even though you are denying an entity access to a network, computer, or location.

 

×:Failed access attempts outside of business hours should be logged and reviewed.

Incorrect, as all unauthorized access attempts should be logged and reviewed regardless. Unauthorized access can occur at any time.

#7. Which of the following is true about the key derivation function (KDF)?

〇:Keys are generated from a master key.

To generate a composite key, a master key is created and a symmetric key (subkey) is generated. The key derivation function generates the encryption key from the secret value. The secret value can be a master key, passphrase, or password. The key derivation function (KDF) generates a key for symmetric key ciphers from a given password.

 

×:Session keys are generated from each other.

Session keys are generated from each other, not from the master key, which is incorrect.

 

×:Asymmetric ciphers are used to encrypt symmetric keys.

It is incorrect because key encryption is not even related to the key derivation function (KDF).

 

×:The master key is generated from the session key.

Reverse, incorrect. Session keys are generally generated from master keys.

#8. Which of the following physical environment designs combines sociology to reduce crime rates and fear of crime?

〇:Crime Prevention by Environmental Design (CPTED)

Crime Prevention by Environmental Design (CPTED) is a method by which crime can be reduced through proper design of the physical environment. It provides guidance on appropriate facility construction and environmental elements and crime prevention. It is used to guide the physical environment to behavioral effects that reduce crime.

 

×:Multi-layered defense model  

The multi-layered defense model is incorrect because it is a hierarchical architecture of physical, logical, and administrative security controls. The concept is that if one layer fails, the asset is protected by other layers. Layers should be moved from the perimeter toward the asset and implemented.

 

×:Hiding by Ambiguity

Concealment by ambiguity is a technique of concealment secured by concealment of information and is incorrect. Basically, it is better not to consider something to be a true secret if it is logically reachable, even if it is not public.

 

×:Access Control

Access control is incorrect because it is guidance by the placement of doors, fences, lighting, and landscaping as people enter. It is an abstract concept and would not fit into a concrete definition that combines sociology.

#9. It appears that this organization is abusing its authority. Which approach would clarify the what, how, where, who, when, and why of each ex officio?

〇:Zachman Framework

The Zachman Framework is an enterprise architecture that determines the what, how, where, who, when, and why for each mandate. Enterprise architecture is to create a management structure to achieve business goals. We create an organization to achieve business goals, and basically, the larger the business goals, the larger the organization. If the structure of the organization is not in place, the organization will not run efficiently, as there may be residual work that needs to be done, or there may be friction between jobs due to authority that is covered by others. Therefore, it is necessary to clarify the scope of each job authority in order to put the organization in order. The job authority here is different from the perspectives of human resources or sales. It is easier to think of them as hierarchically separated to achieve business goals. Clarify the scope in Executive, Business Management, Architecture, Engineers, Subcontractors, and Stakeholders, respectively. Therefore, the correct answer is the Zachman Framework.

 

×:SABSA

SABSA (Sherwood Applied Business Security Architecture) is a framework to ensure that security measures are working properly in achieving business goals. Unlike the Zachman Framework, the tasks to be organized are hierarchical elements. Business Requirements > Conceptual Architecture > Logical Service Architecture > Physical Infrastructure Architecture > Technology and Products, each with a 5W1H practice.

 

×:Five-W method

There is no such term. If there is, it is a term coined to make it easier to interpret.

 

×:Biba Model

The Biba model is a security model that indicates that data cannot be changed without permission.

#10. The CA is responsible for revoking the required certificates. Which of the following adequately describes CRLs and OCSPs?

〇:OCSP is a protocol developed specifically to check CRLs during the certificate validation process.

A Certificate Authority (CA) is responsible for creating certificates, maintaining and distributing them, and revoking them when necessary. Revocation is handled by the CA and the revoked certificate information is stored in a Certificate Revocation List (CRL). This is a list of all revoked certificates. This list is maintained and updated periodically. A certificate is revoked if the key owner’s private key has been compromised, if the CA has been compromised, or if the certificate is incorrect. If a certificate is revoked for any reason, the CRL is a mechanism for others to inform you of this information. The Online Certificate Status Protocol (OCSP) uses this CRL; when using CRLs, the user’s browser must examine the CRL value to the client to see if the accreditation has been revoked or the CA is constantly checking to make sure they have an updated CRL. If OCSP is implemented, it will do this automatically in the background. It performs real-time verification of the certificate and reports back to the user whether the certificate is valid, invalid, or unknown.

 

×:CRL was developed as a more efficient approach to OCSP.

CRLs are often incorrect because they are a cumbersome approach; OCSP is used to deal with this tediousness; OCSP does this work in the background when using CRLs; OCSP checks the CRL to see if the certificate has been revoked by Checks.

 

×:OCSP is a protocol for submitting revoked certificates to CRLs.

OCSP is incorrect because it does not submit revoked certificates to the CRL; the CA is responsible for certificate creation, distribution, and maintenance.

 

×:CRL provides real-time validation of certificates and reports to OCSP.

Incorrect because CRL does not provide real-time validation of certificates to OCSP.

#11. According to the Kerckhoffs’s principle, which of the following should not leak?

The Kerckhoffs’s principle is the idea that cryptography should be secure even if everything but the private key is known. When encrypting data, one decides on a private key and how to encrypt it using that private key. Kerckhoffs says that even if it is known how it is encrypted, it should not be deciphered as long as the secret key is not discovered. Encryption has been with the history of human warfare. The main purpose is to communicate a strategy to one’s allies without being discovered by the enemy. In battle, its designs and encryption devices may be stolen by spies. Therefore, the encryption must be such that it cannot be solved without the key, no matter how much is known about how it works.

#12. What is the AES algorithm used for?

〇:Data Encryption

The Advanced Encryption Standard (AES) is a data encryption standard developed to improve upon the previous de facto standard, Data Encryption Standard (DES). As a symmetric algorithm, AES is used to encrypt data. Therefore, the correct answer is “data encryption.

There are other situations where AES is used in the other choices, but encrypting data is the most focused or better answer. Thus, there are cases where all of the choices are correct.

 

×:Data integrity

This is a characteristic of digital signatures.

 

×:Key recovery

It is a property of decryption and key escrow.

 

×:Symmetric key distribution

Using symmetric keys for AES distribution lowers the key delivery problem.

#13. Which of the following is a drawback of the symmetric key system?

〇:Keys will need to be distributed via a secure transmission channel.

For two users to exchange messages encrypted with a symmetric algorithm, they need to figure out how to distribute the key first. If the key is compromised, all messages encrypted with that key can be decrypted and read by an intruder. Simply sending the key in an email message is not secure because the key is not protected and can easily be intercepted and used by an attacker.

 

×:Computation is more intensive than in asymmetric systems.

That is incorrect because it describes the advantages of symmetric algorithms. Symmetric algorithms tend to be very fast because they are less computationally intensive than asymmetric algorithms. They can encrypt and decrypt relatively quickly large amounts of data that take an unacceptable amount of time to encrypt and decrypt with asymmetric algorithms.

 

×:Much faster operation than asymmetric systems

Symmetric algorithms are faster than asymmetric systems, but this is an advantage. Therefore, it is incorrect.

 

×:Mathematically intensive tasks must be performed

Asymmetric algorithms are wrong because they perform a mathematically intensive task. Symmetric algorithms, on the other hand, perform relatively simple mathematical functions on bits during the encryption and decryption process.

#14. I saw a news report about encryption technology being deciphered by the development of quantum computers. What do you call the phenomenon of existing encryption being deciphered as the computational power of computers improves?

Compromise is when what used to be secure encryption becomes insecure due to the evolution of computers. Cryptography is based on the sharing of a single answer, a key, among those communicating. The key is generated by computer calculations, and a third party must solve a difficult problem that would take several years to derive. However, as the computational power of computers has evolved, it is now possible to solve difficult problems that could not be solved before. In this case, encryption is meaningless. This is the compromise caused by evolution. Therefore, the correct answer is “Compromise.

#15. What are the advantages of depositing cryptographic keys with another organization?

A key escrow system is one in which a third-party organization holds a copy of the public/private key pair. If the private key is stolen, all ciphers can be decrypted. Conversely, if it is lost, all ciphers cannot be decrypted. Therefore, you want to have a copy. However, if you have it yourself, it may be stolen if a break-in occurs, so you leave it with a third-party organization.

#16. Which of the following problems are caused by the hash collision phenomenon?

A collision is when the hash value of two different data from one hash function is the same. Hashing is one-way cryptography, which means that the original plaintext is no longer known to be one or the other.

#17. Sally has performed software analysis against her company’s proprietary applications. She has found that it is possible to force an authentication step to take place before the attacker has successfully completed the authentication procedure. What could be the cause?

〇:Conflict condition

A race condition is present when a process performs a task on a shared resource and the sequence could be in the wrong order. 2 or more processes can have a race condition if they use a shared resource, like data in a variable. It is important that processes perform their functions in the correct sequence.

 

×:Backdoors

Backdoors are incorrect because they are “listening” services on certain ports. Backdoors are implemented by attackers to allow easy access to the system without authenticating as a normal system user.

 

×:Maintenance Hooks

Maintenance hooks are specific software codes that allow easy and unauthorized access to sensitive parts of a software product. Software programmers use maintenance hooks to allow them to get quick access to the code so that they can make fixes in immediate, but this is dangerous.

 

×:Data validation errors

Data validation errors are wrong because an attacker cannot operate on the process execution sequence.

#18. What should I use for streaming ciphers?

〇:One-time pad

Stream ciphers refer to one-time pad technology. In practice, stream ciphers cannot provide the level of protection that one-time pads do, but are practical.

 

×:AES

AES is incorrect because it is a symmetric block cipher. When a block cipher is used for encryption and decryption purposes, the message is divided into blocks of bits.

 

×:Block ciphers

Block ciphers are used for encryption and decryption purposes. The message is wrong because it is divided into blocks of bits.

 

×:RSA

RSA is incorrect because it is an asymmetric algorithm.

#19. TLS is a protocol used to protect transactions that occur over an untrusted network. Which of the following is an appropriate description of what takes place during the setup process of a TLS connection?

〇:The client generates a session key and encrypts it with a public key.

Transport Layer Security (TLS) uses public key cryptography to provide data encryption, server authentication, message integrity, and optionally client authentication. When a client accesses a cryptographically protected page, the web server initiates TLS and begins the process of securing subsequent communications. The server performs a three-handshake to establish a secure session. After that, client authentication with a digital certificate, as the case may be, comes in. The client then generates a session key, encrypts it with the server’s public key, and shares it. This session key is used as the symmetric key for encrypting the data to be transmitted thereafter. Thus, the correct answer is: “The client generates a session key and encrypts it with the public key.” will be

 

×:The server generates the session key and encrypts it with the public key.

The server does not encrypt with the public key.

 

×:The server generates a session key and encrypts it with the private key.

Even if encryption is performed from the server side, it can be decrypted with the public key, so it is not structurally possible.

 

×:The client generates a session key and encrypts it with its private key.

The client side does not have the private key.

#20. The Trusted Computing Base (TCB) ensures security within the system when a process in one domain needs to access another domain to obtain sensitive information. What functions does the TCB perform to ensure this is done in a secure manner?

〇:Execution Domain Switching

Execution domain switching occurs when the CPU needs to move between executing instructions for a more trusted process versus a less trusted process. Trusted Computing Base (TCB) allows processes to switch domains in a secure manner to access different levels of information based on sensitivity. Execution domain switching occurs when a process needs to invoke a process in a higher protection ring. The CPU executes the user-mode instruction back into privileged mode.

At first glance, this is a geeky problem that does not make sense. But don’t give up. Since there is no such thing as skipping, you can only get a right or wrong answer when the question is posed, so it is preferable to answer the question with some degree of prediction.

From this point on, let’s consider how to answer the questions. If you look at the question text and read it to the point where it reads, “You moved from one area to the other, and that was a security breach?” If you can read to that point, then you have two choices: deny or “stop the process,” or change or “switch the domain of execution. Next, the question text reads “if you need to access it,” which is asking how to accomplish this objective, not whether or not you should.

 

×:Execution of I/O operations

This is incorrect because input/output (I/O) operations are not initiated to ensure security when a process in one domain needs to access another domain in order to retrieve sensitive information. I/O operations are performed when input devices (such as a mouse or keyboard) and output devices (such as a monitor or printer, etc.) interact with an application or applications.

 

×:Stopping a Process

A process deactivation is one that occurs when a process instruction is fully executed by the CPU or when another process with a higher priority calls the CPU, which is incorrect. When a process is deactivated, new information about the new requesting process must be written to a register in the CPU. The TCB component must ensure that this is done, since the data replaced in the registers may be confidential.

 

×:Mapping from virtual memory to real memory

Incorrect because memory mapping occurs when a process needs its instructions and data processed by the CPU. The memory manager maps logical addresses to physical addresses so that the CPU knows where to place the data. This is the responsibility of the operating system’s memory manager.

Previous
終了