ドメイン3の試験です。
70%以上で合格になります。
#1. 次のうち参照モニターとセキュリティカーネルの関係を正しく記述しているのはどれですか?
〇:セキュリティカーネルは、参照モニターを実装し実行する
信頼できるコンピューティングベース(TCB)は、システムの保護メカニズムの完全な組み合わせです。これらは、ハードウェア、ソフトウェア、およびファームウェアの形式です。これらの同じコンポーネントは、セキュリティカーネルも構成します。参照モニターは、ハードウェア、ソフトウェア、およびファームウェアを介してセキュリティカーネルによって実装および強制されるアクセス制御の概念です。その際、セキュリティカーネル、サブジェクトが要求しているオブジェクトにアクセスするための適切な権限を持つことを保証します。プログラム、ユーザー、またはプロセスである対象は、適切なアクセス権があることが証明されるまで、要求しているファイル、プログラム、またはリソースにアクセスできません。
×:参照モニターは、セキュリティカーネルで構成されたTCBのコアである
参照モニターはTCBの中核ではないため、正しくありません。 TCBのコアはセキュリティカーネルであり、セキュリティカーネルは参照モニターの概念を実行します。参照モニターは、アクセス制御に関する概念です。物理的なコンポーネントではないため、「抽象的なマシン」と呼ばれることがよくあります。
×:参照モニターは、セキュリティカーネルを実装し実行する
参照モニタがセキュリティカーネルを実装して実行しているわけではない、正しくありません。逆で、セキュリティカーネルは参照モニタを実装し、実行します。参照モニタは抽象的な概念であり、セキュリティカーネルは信頼できるコンピューティングベース内のハードウェア、ソフトウェア、ファームウェアの組み合わせです。
×:セキュリティカーネルつまり抽象的なマシンは、参照モニターの概念を実装される
抽象的なマシンはセキュリティカーネルの別の名前ではないため、正しくありません。抽象的なマシンは、参照モニターの別名です。この概念は、抽象的なマシンがサブジェクトとオブジェクトとの間の仲介者として機能し、サブジェクトが要求しているオブジェクトにアクセスするのに必要な権利を有することを保証し、無許可のアクセスおよび改変から主題を保護します。セキュリティカーネルは、これらの活動を実行するために機能しています。
#2. 仮想ストレージは、システムメモリ用のRAMと二次記憶装置を組み合わせています。次のうち仮想ストレージに関するセキュリティ上の懸念事項はどれですか?
〇:複数のプロセスが同じリソースを使用している
システムは、RAMメモリ空間を拡張するために予約されているハードドライブスペース(スワップスペースと呼ばれる)を使用します。システムが揮発性メモリ空間をいっぱいになると、メモリからハードドライブにデータが書き込まれます。プログラムがこのデータへのアクセスを要求すると、ハードドライブからページフレームと呼ばれる特定の単位でメモリに戻されます。ハードディスクのページに保存されているデータにアクセスすると、物理ディスクの読み書きアクセスが必要になるため、メモリに保存されているデータにアクセスするより時間がかかります。仮想スワップ領域を使用するセキュリティ上の問題は、2つ以上のプロセスが同じリソースを使用し、データが破損または破損する可能性があることです。
×:クッキーがメモリ内に永続的に残ることを可能にする
仮想記憶域はCookieに関連していないため、正しくありません。仮想ストレージは、ハードドライブスペースを使用してRAMメモリスペースを拡張します。 Cookieは、主にWebブラウザで使用される小さなテキストファイルです。クッキーには、Webサイト、サイト設定、ショッピング履歴の資格情報を含めることができます。 Cookieは、Webサーバーベースのセッションを維持するためにも一般的に使用されます。
×:サイドチャネル攻撃が可能になる
サイドチャネル攻撃は物理的な攻撃であるため、正しくありません。この種の攻撃では、放棄された放射線、処理に要した時間、タスクを実行するために消費された電力などからメカニズム(スマートカードや暗号化プロセッサなど)がどのように機能するかに関する情報を収集します。情報を使用して、そのメカニズムをリバースエンジニアリングして、セキュリティタスクの実行方法を明らかにします。これは仮想ストレージに関連していません。
×:2つのプロセスがサービス拒否攻撃を実行できる
オペレーティングシステムがすべてのリソース間でメモリを共有する必要があるため、プロセス間でリソースを共有しているシステム内で最大の脅威は、あるプロセスが他のプロセスのリソースに悪影響を及ぼすことです。これはメモリの場合には、特に当てはまります。なぜならすべてのそれらが機密であるかどうかに関係なく、そこに命令が格納されるからです。2つのプロセスが連携してサービス拒否攻撃を行うことは可能ですが、これは仮想ストレージの使用の有無にかかわらず実行できる攻撃の1つに過ぎません。
#3. マージは、ジョージに送信されるメッセージのデジタル署名を作成するために彼女の秘密鍵を使用していますが、彼女はジョージに秘密鍵を表示したり共有していない。この状況を示しているものはどれか。
〇:ゼロ知識証明
ゼロ知識証明は、誰かがあなたが知る必要があるよりも、より多くの情報を伝えることなく、あなたに何かを伝えることができることを意味します。暗号化では、それはあなたがその鍵を共有するか、誰にもそれを示すことなく、特定のキーを持っていることを証明することを意味します。ゼロ知識証明(通常は数学的)は、敏感な何かを明らかにすることなく、真実であることを別のものに証明するために、一方の当事者のための対話的な方法です。
×:キークラスタリング
キークラスタリングとは、同じ平文を別々の鍵で暗号化したのに、同じ暗号文になる現象です。
×:誕生日攻撃を回避
攻撃者は、誕生日攻撃と呼ばれる、衝突を強制しようと試みることができます。この攻撃は、標準的な統計に存在する数学的な誕生日のパラドックスに基づいています。これは確率論で誕生日の問題の背後に数学を利用した暗号攻撃です。
×:データの機密性を提供
データが鍵で暗号化されたときに暗号化を介して提供されるもので、正しくありません。
#4. レイシーのマネージャーは、新しいディスパッチングセンターの侵入検知システムを調査することを彼女に任命しました。レイシーは上位5製品を特定し、評価を比較します。次のうち、本目的に沿った今日最も使用されている評価基準フレームワークはどれですか?
〇:コモンクライテリア
コモンクライテリアは、信頼できるコンピュータシステム評価基準(TCSEC)と情報技術セキュリティ評価基準(ITSEC)の両方の長所を組み合わせて弱点を排除する方法として1990年代初めに作成されました。コモンクライテリアは、TCSECよりも柔軟性があり、ITSECよりも簡単です。コモンクライテリアは、世界的に認知されているため、評価の複雑さを軽減し、さまざまな評価スキームで異なる評価の定義と意味を理解する必要性を排除して消費者を支援します。これは、さまざまなルールと要件で複数の異なる評価基準を満たすのではなく、製品を国際的に販売したい場合に、特定の一連の要件を構築できるようになったため、メーカーにとっても役立ちます。
×:ITSEC
情報技術セキュリティ評価基準が最も広く使用されていないため、正しくありません。 ITSECは、多くのヨーロッパ諸国でコンピュータシステムと製品のセキュリティ属性を評価するための単一の基準を確立する最初の試みでした。さらに、ITSECは評価において機能性と保証性を分離し、それぞれに別の評価を与えます。これは、TCSECよりも高い柔軟性を提供するために開発され、ネットワークシステムにおける完全性、可用性、および機密性に対処します。 ITSECの目標は製品評価の世界基準となることでしたが、その目標を達成できず、コモンクライテリアに置き換えられました。
×:レッドブック
ネットワークおよびネットワークコンポーネントのセキュリティ評価トピックに対処する米国政府の出版物であるため、間違っています。正式にTrusted Network Interpretationと題されたこの本は、さまざまなタイプのネットワークを保護するためのフレームワークを提供しています。ネットワーク上のオブジェクトにアクセスする被験者は、制御、監視、および監査が必要です。
×:オレンジブック
政府および軍の要件とオペレーティングシステムに対する期待に対応する米国政府の出版物であるため、正しくありません。オレンジブックは、製品に、ベンダーが要求するセキュリティー特性と特定のアプリケーションまたは機能に適しているかどうかを評価するために使用されます。オレンジブックは、評価中の製品の機能、有効性、保証をレビューするために使用され、セキュリティ要件の典型的なパターンに対処するために考案されたクラスを使用します。どのユーザーがシステムにアクセスできるかを制御することに重点を置いて、信頼できるシステムの構築と評価のための幅広いフレームワークを提供します。 オレンジブックと言っていますが、もう1つの名前はTrusted Computer System Evaluation Criteria(TCSEC)です。
#5. 上司のドキュメントを書き換えることにより、上司に誤った情報を流すことがないことを保証するためのアクセス制御の公理はどれでしょうか。
〇:スター完全性公理
Bibaモデルでは、完全性のあるモデルとは2つの公理を持つものと定義しています。シンプル完全性公理とは、部下のドキュメントが見ること、Read Downがないことです。スター完全性公理とは、上司のドキュメントを書き換えること、Write Upがないことです。シンプル完全性公理が守られないと、部下のドキュメントが見られ、下位にある機密レベルのない誤った情報を吸収しかねないのです。スター完全性公理が守られないと、上司のドキュメントを書き換えてしまい、それを見た上司に誤った情報を流すことになります。そのため、2つとも完全性を保つ条件になります。よって正解は、「スター完全性公理」になります。
×:シンプル完全性公理
シンプル完全性公理とは、Read Downに対する制約です。
×:強トランキリ公理
強トランキリティ属性とは、システム稼働中は権限変更しないことです。
×:弱トランキリ公理
弱トランキリティ属性とは、属性が矛盾するまで権限変更しないことです。
#6. 物理的アクセス制御であるゲートとフェンスを設置する理由は何ですか?
ゲート・フェンスは物理的な抑止力、予防策として利用されます。フェンスは3フィート(約1m)などの小さな柵では抑止力になる可能性がありますが、8フィート(約2.4m)などの高いものは抑止力となり、防止メカニズムになります。フェンスの目的は、施設からの出入り経路を限定しドア・ゲート・回転式改札口からのみ発生するようにすることです。
#7. 仮想化の利点として誤っているものはどれでしょうか。
〇:オペレーティングシステムのパッチ適用が簡単になる。
誤っているものを選択する問題です。仮想化は、オペレーティングシステムのパッチ適用を簡素化しません。実際、少なくとも1つのオペレーティングシステムが追加されているため、複雑になっています。各オペレーティングシステムは一般的なバージョン構成と異なり、パッチ適用の複雑さが増します。サーバー自体のオペレーティングシステムは、ホスト環境内でゲストとして実行されます。従来のサーバーオペレーティングシステムをパッチして維持するだけでなく、仮想化ソフトウェア自体をパッチして維持する必要があります。よって正解は、「オペレーティングシステムのパッチ適用が簡単になる。」になります。
この問題に関しては、仮想化のすべての技術体系を理解していることを求めてはいません。ここで要求されるのは、消去法による回答の選定です。
×:安全なコンピューティングプラットフォームを構築できる。
安全なコンピューティングプラットフォームを構築すること自体は仮想化の特徴ではないかもしれません。しかし、安全な環境を構築できないか?ということを否定できないため、誤っている選択肢から外れます。
×:障害およびエラーの封じ込めを提供できる。
仮想化は、ホストの独立を行うことができます。封じ込めという意味では、物理サーバからの独立による障害およびエラーの封じ込めを提供できる解釈も可能です。よって否定できないため、誤っている選択肢から外れます。
×:強力なデバッグ機能を提供できる。
仮想化は、クリーンな仮想ホストを立てるだけではなく、固有の環境を再現することができます。よって否定できないため、誤っている選択肢から外れます。
#8. マンディは同社の非対称アルゴリズムを用いて、260人の従業員のために鍵を生成する必要があります。必要となる鍵はいくつでしょうか。
非対称アルゴリズムでは、すべてのユーザーが少なくとも一つの鍵のペア(秘密鍵と公開鍵)しておく必要があります。公開鍵システムでは、各エンティティは別の鍵を有しています。この環境で必要なキーの数を決定するための式は N ×2の数でになります(Nは配布する人数)。つまり、260×2=520となります。よって正解は、「520」になります。
#9. インサイダー取引は意図せぬ情報の伝達によって生じてしまうことがある。次のうち、このような事態を備えるために最も適切なアクセス制御モデルは何か。
〇:ブリューワーナッシュモデル(Brewer-Nash Model)
ブリューワーナッシュモデル(Brewer-Nash Model)とは、インサイダー取引などの組織内の情報のフローに着目したセキュリティモデルです。インサイダー取引とは、内部情報が外部に漏れ出ることで起こります。現実問題、口伝えに無関係な人に知り渡っていくことで思わぬところにまで情報がいきわたることがあります。そんな情報の流れを考慮に入れるため、シミュレーションのような形でアクセス権限を決めます。
×:格子ベースアクセスコントロール
格子ベースアクセスコントロールとは、一つの主体が複数のアクセス権を持ち得ることを想定し、アクセスコントロールをある条件下で取りえるすべての関係性として考えることです。
×:Bibaモデル
Bibaモデルとは、データが勝手に変更されないことを示すセキュリティモデルの一つです。
×:ハリソンルゾウルマンモデル
ハリソンルゾウルマン(Harrison-Ruzzo-Ullman)モデルとは、グラハムデニングモデルの8つルールをアクセス制御マトリクスを使って6つのルールに集約したモデルです。
#10. 次のうちClark-Wilsonアクセスモデルの共通の関連性はどれですか?
〇:定型的トランザクション
クラーク・ウィルソン(Clark-Wilson)モデルでは、被験者はこのアクセスがどのように行われるかを制御する何らかのタイプのアプリケーションまたはプログラムを経由することなく、オブジェクトにアクセスすることはできません。サブジェクト(通常はユーザ)はアプリケーションに連動する形で、「定型的トランザクション」として定義されているアプリケーションソフトウェア内のアクセスルールに基づいて必要なオブジェクトにアクセスできます。
×:チャイルドウォールモデル
ユーザーの以前の行動に応じて動的に変更できるアクセスコントロールを提供するために作成されたBrewer Nashモデルの別の名前であるため、間違っています。これは、アクセス試行や利害の衝突から形作られるもので、被験者と物体との間に情報が流れることはありません。このモデルでは、サブジェクトが異なるデータセットにある別のオブジェクトを読み取れない場合にのみ、サブジェクトがオブジェクトに書き込むことができます。
×:アクセスタプル
Clark-Wilsonモデルはアクセスタプルではなくアクセストリプルを使用するため、正しくありません。アクセストリプルは、対象プログラムオブジェクトである。これは、サブジェクトが認可されたプログラムを通じてオブジェクトにのみアクセスできることを保証します。
×:Write Up及びWrite Down
Clark-WilsonモデルにはWrite Up及びWrite Downがないため、正しくありません。これらのルールはBell-LaPadulaとBibaモデルに関連しています。 Bell-LaPadulaモデルには、読み込まれていない単純なセキュリティルールと、書き留められていないスタープロパティルールが含まれています。 Bibaモデルには、読み込まれていないシンプル完全性公理と、書かれていないスター完全性公理が含まれています。
#11. サリーは彼女の組織内の鍵の管理を担当しています。次のうちどれが安全な鍵管理として間違っていますか?
〇:有効期限は短く設定する必要があります。
鍵管理は、適切な保護のために重要です。鍵管理の一部は、鍵の有効期間を決定することであり、それは保護しているデータの感度に応じて決められるでしょう。機密データに関しては定期的に鍵を変更することが求められ、その鍵の有効期限も短くなります。一方、安全性の低いデータは、有効期限の長い鍵であっても問題はありません。
×:鍵は、バックアップまたは緊急事態に備えて預託するべきです。
鍵がバックアップまたは緊急事態の場合に預託しなければならないことは事実であるので、間違っています。鍵は、紛失破壊、破損する危険にさらされています。必要なときにバックアップコピーが利用可能であり、容易にアクセスできる必要があります。
×:鍵を公開してはいけません。
当然です。鍵なのですから。
×:キーは保存され、安全な手段によって送信されるべきです。
鍵が格納され、安全な手段によって送信されるべきであることは事実であるので、間違っています。キーは配布の前後に格納されています。キーがユーザに配布される場合には、ファイルシステム内の安全な場所に格納され、制御された方法で使用される必要があります。
#12. あなたはベンダー中立のエンタープライズアーキテクチャフレームワークを持つ取締役会に対して、ITとビジネスプロセスの不整合による断片化を軽減するのに役立つものを報告するように指示されています。次のどのフレームワークを提案する必要がありますか?
〇:TOGAF
オープングループアーキテクチャフレームワーク(TOGAF)は、エンタープライズアーキテクチャーの開発と実装のためのベンダーに依存しないプラットフォームです。メタモデルとサービス指向アーキテクチャ(SOA)を使用して企業データを効果的に管理することに重点を置いています。 TOGAFの熟達した実装は、伝統的なITシステムと実際のビジネスプロセスの不整合に起因する断片化を減らすことを目的としています。また、新しい変更や機能を調整して、新しい変更を企業プラットフォームに容易に統合できるようにします。
×:DoDAF(Department of Defense Architecture Framework)
米国国防総省システムのエンタープライズアーキテクチャの組織に関するガイドラインにあたり、間違っています。軍事、民間、公共分野の大規模で複雑な統合システムにも適しています。
×:ソフトウエアの開発中に能力成熟度モデル統合(CMMI)
ソフトウェアを設計し、さらに向上させる目的のフレームワークであり、不適切です。 CMMIは、開発プロセスの成熟度を測定できるソフトウェア開発プロセスの標準を提供します。
×:ISO/IEC 42010
ソフトウェア集約型システムアーキテクチャの設計と概念を簡素化するための推奨プラクティスで構成されているため、正しくありません。この標準は、ソフトウェアアーキテクチャーのさまざまなコンポーネントを説明するための一種の言語(用語)を提供し、それを開発のライフサイクルに統合する方法を提供します。
#13. ハッシュの衝突現象によって生じる問題はどれか。
衝突とは、あるハッシュ関数から異なる2つのデータのハッシュ値が同じになること。ハッシュ化は一方向暗号であり、元の平文がいずれかであることがわからなくなります。
#14. ストリーミング暗号をするには何を使えばよいでしょう?
〇:ワンタイムパッド
ストリーム暗号は、ワンタイムパッドの技術を参照しています。
×:AES
AESは対称ブロック暗号であるため、正しくありません。ブロック暗号は、暗号化および復号の目的で使用される場合、メッセージはビットのブロックに分割されます。
×:ブロック暗号
ブロック暗号は、暗号化および復号化目的のために使用されます。メッセージは、ビットのブロックに分割されているため、間違っています。
×:RSA
RSAは、非対称アルゴリズムであるため、正しくありません。
#15. 量子コンピュータの開発によって暗号化技術が解読されるニュースを見た。コンピュータの計算能力の向上に伴って、既存の暗号が解読される現象を何というか。
危殆化とは、安全な暗号化だったものがコンピュータの進化によって安全でなくなることを言います。暗号は鍵という一つの答えを通信を行うもの同士で共有していることで成り立ちます。鍵はコンピュータの計算によって生成され、鍵を第3者が導き出すには数年かかるような難問を解かなければなりません。しかしながら、コンピュータの計算能力が進化し、前までは解けなかった難問も解けるようになりました。こうなると暗号化の意味がありません。これが進化による危殆化です。よって正解は、「危殆化」になります。
#16. 公開鍵暗号方式と公開鍵基盤との違いはどれですか?
〇:公開鍵インフラストラクチャは公開鍵暗号配布のメカニズム構成であり、公開鍵暗号方式は非対称暗号化の別名です。
公開鍵暗号方式は、非対称暗号です。用語は互換的に使用されます。公開鍵暗号は、証明機関、登録機関、証明書、キー、プログラム、およびユーザーなど、さまざまな部分とから構成されている公開鍵基盤(PKI)の中の一つの概念です。公開鍵基盤は、ユーザを識別作成し、証明書を配布し、維持し、証明書を失効、配布し、暗号化キーを維持し、暗号化通信と認証の目的のために利用されます。
×:公開鍵基盤が対称アルゴリズムを使用し、公開鍵暗号方式は非対称アルゴリズムを使用します。
公開鍵基盤は、対称および非対称鍵アルゴリズムおよび方法のハイブリッドシステムを使用しているため、正しくありません。公開鍵暗号方式は、非対称アルゴリズムを使用することです。したがって、非対称暗号と公開鍵暗号方式は、交換可能であり、同じことを意味します。非対称アルゴリズムの例としては、RSA、楕円曲線暗号(ECC)、ディフィー・ヘルマン、エル・ガマルです。
×:公開鍵基盤は鍵交換を実行するために使用され、公開鍵暗号方式は公開鍵/秘密鍵のペアを作成するために使用されます。
公開鍵暗号は、公開鍵/秘密鍵のペアを作成鍵交換を実行し、デジタル署名を生成し、検証するために使用されている非対称アルゴリズムの使用であるため、正しくありません。
×:公開鍵基盤は機密性と完全性を提供し、公開鍵暗号は認証と否認防止を提供します。
公開鍵基盤自体は、認証、否認防止、機密性、完全性を提供しているわけではないので、間違っています。
#17. 次のうちステガノグラフィの説明として間違っているものはどれでしょうか?
〇:利用される最も一般的な方法として、最上位ビットを変更します。
ステガノグラフィーは、他のメディアタイプのデータに隠蔽する方法です。媒体のいくつかの種類にメッセージを埋め込む最も一般的な方法の一つは、最下位ビット(LSB)を使用しています。ファイルの多くの種類が変更され、機密データが見えるようにしてファイルを変更せずに非表示にすることができる場所であるためです。LSBのアプローチでは、高解像度や音を多く含むオーディオファイル(高ビットレート)のグラフィックス内に情報を隠すことに成功しています。
×:抽象化による隠蔽です。
ステガノグラフィは、抽象化による隠蔽であるため、正しくありません。あいまいさによるセキュリティは、実際に対策を使って何かを確保するのではなく、誰かが資産を保護する方法として、秘密を使用することを意味します。
×:暗号化がそうであるように、ステガノグラフィも機密データ自体の存在性を表に示しているわけではない。
暗号化を行うようにステガノグラフィが自分自身に注意を引くしないことは事実です。つまりは、抽象化による隠蔽です。
×:メディアファイルは、サイズが大きいステガノグラフィ伝送に最適です。
誰もが気づくことは低い可能性と操作するための複数のビットを私用する必要があるため、より大きなメディアファイルはステガノグラフィ伝送のために理想的であることは事実であるため、正しくありません。
#18. AESのアルゴリズムは、何のために使用されていますか?
〇:データの暗号化
AES(Advanced Encryption Standard)は、以前のデファクトスタンダードであるデータ暗号化規格(DES)を改善するために開発されたデータ暗号化規格です。対称アルゴリズムとしては、AESはデータを暗号化するために使用されます。よって正解は、「データの暗号化」になります。
ほかの選択肢でもAESを利用するシーンはありますが、データの暗号化が最も焦点のあっている、もしくはマシな回答です。このように、すべて正しいと思われる中から選択するケースもあります。
×:データの整合性
デジタル署名の特性です。
×:キーリカバリ
復号やキーエスクローの特性です。
×:対称鍵の配布
AESの配布のために対称鍵を用いることは鍵配送問題に低触します。
#19. 次のうちPKI環境で発生する事象はどれでしょうか?
〇:CAは証明書に署名します。
認証局(CA)は、デジタル証明書を維持し、信頼できる機関(またはサーバ)です。証明書を要求すると、登録局(RA)は、その個人の身元を確認し、CAに証明書要求を渡します CAは、証明書を作成し、署名し、その有効期限にわたって証明書を保持しています。
×:RAは証明書を作成し、CAはそれに署名します。
RAは、証明書を作成していないため正しくありません。CAは、それを作成し、それに署名します。RAは、認証登録業務を行います。RAを確立し、証明書を要求する個人のアイデンティティを確認し、エンドユーザーに代わってCAに認証プロセスを開始し、証明書のライフサイクル管理機能を実行することができます。RAは、証明書を発行することはできませんが、ユーザーとCAの間のブローカーとして機能することができます ユーザーが新しい証明書を必要とするとき、彼らはRAに要求を行いRAはCAに行くため、要求を許可する前にすべての必要な識別情報を検証します。
×:RAは証明書に署名します。
RAは、証明書に署名していないため正しくありません。CAは、証明書に署名します。RAは、利用者の識別情報を検証してから、CAに証明書の要求を送信します。
×:ユーザーは証明書に署名します。
ユーザーが証明書に署名していないため、正しくありません。PKI環境では、ユーザーの証明書が作成され、CAによって署名されます。 CAはその公開鍵を保持するユーザー証明書を生成する信頼できる第三者機関です。
#20. 暗号化を2回しているのにさほど暗号強度がないと言えるのは、次のうちどの攻撃に依存するものか。
〇:中間一致攻撃
中間一致攻撃とは、暗号と復号を同時にすることにより鍵を取得する攻撃です。DESのように古い暗号化方式であっても、暗号化を2回繰り返せば安全であろうと一瞬思います。しかしながら、2回暗号化してもさほど強度が上がりません。暗号化を2回繰り返すと、平文、暗号文1回目、暗号文2回目の3つができます。めぼしい鍵をひとつずつあてはめていきもしもそれが正しい鍵であるとき、暗号と復号を同時に行っていけばどこかで一致します。わざわざ2回も暗号化しているのに、暗号文から平文を見つけるのとあまり変わりません。共通鍵暗号化方式の一つであるDESは脆弱性が発見された後、数段階DESを行う方法が考えられました。2DESではこの中間一致攻撃の対象になるため、3回を繰り返す3DESという方法が考案されました。よって正解は、「中間一致攻撃」になります。
×:CRIME攻撃
CRIME攻撃とは、暗号文の圧縮率から元のデータを解読する攻撃です。
×:BEAST攻撃
BEAST攻撃とは、Web通信での暗号化の脆弱性を利用して、盗聴する攻撃です。
×:サイドチャネル攻撃
サイドチャネル攻撃とは、物理的な情報からシステムデータを盗聴する攻撃です。




