
ドメイン3の試験です。
70%以上で合格になります。
#1. 楕円曲線暗号は非対称アルゴリズムです。他の非対称アルゴリズムと比べて何が優れているでしょうか。
〇:暗号化、復号がより効率的です。
楕円曲線は、アプリケーションの多くの異なる種類の有用性が示されている豊富な数学的構造です。楕円曲線暗号(ECC)は、その効率のために、他の非対称アルゴリズムとは異なります。ECCは、他の非対称アルゴリズムよりも計算量が少ないため効率的です。ほとんどの場合、鍵が長いほど安全を保護するための計算も肥大化しますが、ECCはRSAが必要とするよりも短い鍵サイズと同じレベルの保護を提供することができます。
×:デジタル署名、安全な鍵配布、および暗号化を提供します。
ECCは、デジタル署名、安全な鍵配布、および暗号化を提供する唯一の非対称アルゴリズムではありませんので、間違っています。RSAなど他の非対称アルゴリズムによって提供されます。
×:有限離散対数で計算します。
ディフィー・ヘルマンとエル・ガマルが有限離散対数を計算するため、間違っています。
×:暗号化を実行するためにリソースの大きな割合を使用します。
他の非対称アルゴリズムと比較した場合のECCがはるかに少ないリソースを使用しているため正しくありません。無線機器や携帯電話のようないくつかのデバイスは、処理能力、ストレージ、電力、帯域幅が限られています。このタイプで用いる暗号化方法として、リソースの利用効率は非常に重要です。
#2. 独自サーバーのネットワーク環境の維持費の増加を解消するため、クラウドベースのソリューションに移行したいと考えています。次のうち、選ぶべき典型的なクラウドベースソリューションの正しい定義とマッピングはどれでしょうか。
〇:クラウドプロバイダは、オペレーティングシステム、データベース、及びウェブサーバを含むことができるコンピューティング・プラットフォームを提供するサービスとしてのプラットフォームが提供されます。
クラウドコンピューティングは、ネットワークやサーバ技術を集約し、それぞれを仮想化し、顧客にニーズにマッチした特定のコンピューティング環境を提供するための用語です。この集中制御は、セルフサービス、複数のデバイス間での広範なアクセス、リソースプーリング、迅速な弾力性、サービスの監視機能をエンドユーザーに提供します。
クラウドコンピューティング製品の異なる種類があります。IaaSは、クラウド上に仮想化されたサーバを提供します。PaaSは、アプリケーションは個別に開発することができます。SaaSは、サービス提供者は開発不要で機能の取捨選択でサービス展開できます。”独自のアプリケーション構成は変えずに”という条件からPaaSの定義に合言葉を選ぶ必要があります。よって正解は、「クラウドプロバイダは、オペレーティングシステム、データベース、及びウェブサーバを含むことができるコンピューティング・プラットフォームを提供するサービスとしてのプラットフォームが提供されます。」になります。
×:クラウドプロバイダは、オペレーティングシステム、データベース、及びウェブサーバを含むコンピューティング・プラットフォームを提供するサービスとしてのインフラストラクチャが提供されます。
IaaSの説明です。
×:クラウドプロバイダは、従来のデータセンターと同様の基盤環境を提供するようなソフトウェアサービスが提供される。
クラウドの営業的な利点の説明です。定義ではありません。
×:クラウドプロバイダは、アプリケーション機能が内包されたコンピューティング・プラットフォーム環境においてサービスとしてのソフトウェアが提供されます。
SaaSの説明です。
#3. 上司のドキュメントを書き換えることにより、上司に誤った情報を流すことがないことを保証するためのアクセス制御の公理はどれでしょうか。
〇:スター完全性公理
Bibaモデルでは、完全性のあるモデルとは2つの公理を持つものと定義しています。シンプル完全性公理とは、部下のドキュメントが見ること、Read Downがないことです。スター完全性公理とは、上司のドキュメントを書き換えること、Write Upがないことです。シンプル完全性公理が守られないと、部下のドキュメントが見られ、下位にある機密レベルのない誤った情報を吸収しかねないのです。スター完全性公理が守られないと、上司のドキュメントを書き換えてしまい、それを見た上司に誤った情報を流すことになります。そのため、2つとも完全性を保つ条件になります。よって正解は、「スター完全性公理」になります。
×:シンプル完全性公理
シンプル完全性公理とは、Read Downに対する制約です。
×:強トランキリ公理
強トランキリティ属性とは、システム稼働中は権限変更しないことです。
×:弱トランキリ公理
弱トランキリティ属性とは、属性が矛盾するまで権限変更しないことです。
#4. 次のうちステガノグラフィの説明として間違っているものはどれでしょうか?
〇:利用される最も一般的な方法として、最上位ビットを変更します。
ステガノグラフィーは、他のメディアタイプのデータに隠蔽する方法です。媒体のいくつかの種類にメッセージを埋め込む最も一般的な方法の一つは、最下位ビット(LSB)を使用しています。ファイルの多くの種類が変更され、機密データが見えるようにしてファイルを変更せずに非表示にすることができる場所であるためです。LSBのアプローチでは、高解像度や音を多く含むオーディオファイル(高ビットレート)のグラフィックス内に情報を隠すことに成功しています。
×:抽象化による隠蔽です。
ステガノグラフィは、抽象化による隠蔽であるため、正しくありません。あいまいさによるセキュリティは、実際に対策を使って何かを確保するのではなく、誰かが資産を保護する方法として、秘密を使用することを意味します。
×:暗号化がそうであるように、ステガノグラフィも機密データ自体の存在性を表に示しているわけではない。
暗号化を行うようにステガノグラフィが自分自身に注意を引くしないことは事実です。つまりは、抽象化による隠蔽です。
×:メディアファイルは、サイズが大きいステガノグラフィ伝送に最適です。
誰もが気づくことは低い可能性と操作するための複数のビットを私用する必要があるため、より大きなメディアファイルはステガノグラフィ伝送のために理想的であることは事実であるため、正しくありません。
#5. サリーは彼女の組織内の鍵の管理を担当しています。次のうちどれが安全な鍵管理として間違っていますか?
〇:有効期限は短く設定する必要があります。
鍵管理は、適切な保護のために重要です。鍵管理の一部は、鍵の有効期間を決定することであり、それは保護しているデータの感度に応じて決められるでしょう。機密データに関しては定期的に鍵を変更することが求められ、その鍵の有効期限も短くなります。一方、安全性の低いデータは、有効期限の長い鍵であっても問題はありません。
×:鍵は、バックアップまたは緊急事態に備えて預託するべきです。
鍵がバックアップまたは緊急事態の場合に預託しなければならないことは事実であるので、間違っています。鍵は、紛失破壊、破損する危険にさらされています。必要なときにバックアップコピーが利用可能であり、容易にアクセスできる必要があります。
×:鍵を公開してはいけません。
当然です。鍵なのですから。
×:キーは保存され、安全な手段によって送信されるべきです。
鍵が格納され、安全な手段によって送信されるべきであることは事実であるので、間違っています。キーは配布の前後に格納されています。キーがユーザに配布される場合には、ファイルシステム内の安全な場所に格納され、制御された方法で使用される必要があります。
#6. 量子コンピュータの開発によって暗号化技術が解読されるニュースを見た。コンピュータの計算能力の向上に伴って、既存の暗号が解読される現象を何というか。
危殆化とは、安全な暗号化だったものがコンピュータの進化によって安全でなくなることを言います。暗号は鍵という一つの答えを通信を行うもの同士で共有していることで成り立ちます。鍵はコンピュータの計算によって生成され、鍵を第3者が導き出すには数年かかるような難問を解かなければなりません。しかしながら、コンピュータの計算能力が進化し、前までは解けなかった難問も解けるようになりました。こうなると暗号化の意味がありません。これが進化による危殆化です。よって正解は、「危殆化」になります。
#7. 米国国家安全保障局(NSA)は、すべてのマザーボードにクリッパーチップを組み込みたいと考えていました。このチップはどの暗号化アルゴリズムを使用しましたか?
クリッパーチップは、米国国家安全保障局(NSA)によって開発され、組み込みのバックドアとして「音声およびデータメッセージ」を保護する暗号化デバイスとして搭載されたチップセットです。ブロック暗号であるSkipJackを使用していました。
#8. サブジェクトとオブジェクト間のアクセス権を安全に開発する方法を定義するセキュリティアーキテクチャモデルはどれですか?
〇:Graham-Denningモデル
Graham-Denningモデルは、サブジェクトとオブジェクト間のアクセス権がどのように定義され、開発され、統合されるかを扱っています。これは、特定のサブジェクトがオブジェクトに対して実行できるコマンドの観点から基本的な権利のセットを定義します。このモデルには、これらのタイプの機能を安全に行う方法に関する8つの基本保護権またはルールがあります。
×:Brewer-Nashモデル
ユーザーの以前の操作に応じて動的に変更できるアクセスコントロールを提供することを目的としているため、間違っています。主な目的は、ユーザーのアクセス試行による利益相反から保護することです。たとえば、大規模なマーケティング会社が2つの銀行のマーケティングプロモーションや資料を提供している場合、銀行Aのプロジェクトを担当する従業員は、マーケティング会社が他の銀行顧客である銀行Bの情報を見ることができないはずです。銀行が競争相手であるために利益相反が生じる可能性があります。マーケティング会社のプロジェクトAのプロジェクトマネージャーが、銀行Bの新しいマーケティングキャンペーンに関する情報を見ることができれば、より直接的な顧客を喜ばせるためにプロモーションよりも実行を試みる可能性があります。マーケティング会社は社内の従業員が無責任な行動をとることができてしまうと、評判が悪くなります。
×:Clark-Wilsonモデル
データの整合性を保護し、アプリケーション内で適切にフォーマットされたトランザクションが確実に行われるように、Clark-Wilsonモデルが実装されているため、間違っています。サブジェクトは、許可されたプログラムを通じてのみオブジェクトにアクセスできます。職務の分離が強制される。監査が必要です。 Clark-Wilsonモデルは、権限のないユーザーによる変更の防止、権限のないユーザーによる不適切な変更の防止、内部および外部の一貫性の維持という3つの完全性目標に対応しています。
×:Bell-LaPadulaモデル
米軍のシステムのセキュリティと分類された情報の漏洩に対する懸念に対応するために開発されたモデルであり、間違っています。モデルの主な目的は、機密情報が不正にアクセスされるのを防ぐことです。これは、アクセス制御の機密性の側面を強制するステートマシンモデルです。マトリックスとセキュリティレベルは、サブジェクトが異なるオブジェクトにアクセスできるかどうかを判断するために使用されます。主題のオブジェクトの分類と比較して、オブジェクト間のやりとりの仕方を制御するための特定の規則が適用されます。
#9. 次のうちメモリマネージャーの役割ではないものはどれですか?
〇:未使用のコミットされたメモリを識別し、メモリが利用可能であることをオペレーティングシステムに知らせるアルゴリズムを実行する。
この回答は、メモリマネージャーではなくガベージコレクタの機能について説明しています。ガベージコレクタはメモリリークに対する対策です。アルゴリズムを実行して未使用のコミット済みメモリを特定し、オペレーティングシステムにそのメモリを「使用可能」とマークするように指示するソフトウェアです。異なるタイプのガベージコレクタは、異なるオペレーティングシステム、プログラミング言語、およびアルゴリズムで動作します。
4択問題では、明確な答えは知らなくとも解答できる場合があります。4択問題では正解が一つしかないために、回答をグループ分けすることで、「同じことを言っているため、どちらかだけが正解になるのはおかしい、よってどちらも間違いである」という減らし方ができます。プロセスが適切にメモリを扱えるように制御する旨の回答が2つありますが、もしもメモリマネージャーにその機能がないとするとどちらも正解になってしまうため、そもそも選択肢から排除することができます。
×:プロセスが同じ共有メモリセグメントを使用する必要がある場合、複雑な制御を使用して整合性と機密性を保証します。
プロセスが同じ共有メモリセグメントを使用する必要がある場合、メモリマネージャーは複雑な制御を使用して整合性と機密性を確保します。これは、2つ以上のプロセスが潜在的に異なるアクセス権で同じセグメントへのアクセスを共有できるため、メモリとその中のデータを保護する上で重要です。また、メモリマネージャは、異なるレベルのアクセス権を持つ多くのユーザーが、1つのメモリセグメントで実行されている同じアプリケーションとやりとりすることを許可します。
×:プロセスに割り当てられたメモリセグメントとのみ対話するように、プロセスを制限する。
メモリマネージャーがプロセスの相互作用を、それらに割り当てられたメモリセグメントのみに限定する責任があります。この責任は保護カテゴリの下にあり、プロセスが許可されていないセグメントへのアクセスを妨げるのに役立ちます。メモリマネージャーの別の保護責任は、メモリセグメントへのアクセス制御を提供することである。
×:必要に応じてRAMからハードドライブに内容をスワップします。
必要に応じてRAMからハードドライブへの内容のスワップが再配置カテゴリに属するメモリマネージャーの役割であるため、正しくありません。 RAMとセカンダリストレージが結合されると、仮想メモリになります。システムは、ハードドライブスペースを使用してRAMメモリ空間を拡張します。別の再配置の責任としては、命令とメモリセグメントがメインメモリ内の別の場所に移動された場合に、アプリケーションのポインタを提供することです。
#10. 公開鍵暗号方式と公開鍵基盤との違いはどれですか?
〇:公開鍵インフラストラクチャは公開鍵暗号配布のメカニズム構成であり、公開鍵暗号方式は非対称暗号化の別名です。
公開鍵暗号方式は、非対称暗号です。用語は互換的に使用されます。公開鍵暗号は、証明機関、登録機関、証明書、キー、プログラム、およびユーザーなど、さまざまな部分とから構成されている公開鍵基盤(PKI)の中の一つの概念です。公開鍵基盤は、ユーザを識別作成し、証明書を配布し、維持し、証明書を失効、配布し、暗号化キーを維持し、暗号化通信と認証の目的のために利用されます。
×:公開鍵基盤が対称アルゴリズムを使用し、公開鍵暗号方式は非対称アルゴリズムを使用します。
公開鍵基盤は、対称および非対称鍵アルゴリズムおよび方法のハイブリッドシステムを使用しているため、正しくありません。公開鍵暗号方式は、非対称アルゴリズムを使用することです。したがって、非対称暗号と公開鍵暗号方式は、交換可能であり、同じことを意味します。非対称アルゴリズムの例としては、RSA、楕円曲線暗号(ECC)、ディフィー・ヘルマン、エル・ガマルです。
×:公開鍵基盤は鍵交換を実行するために使用され、公開鍵暗号方式は公開鍵/秘密鍵のペアを作成するために使用されます。
公開鍵暗号は、公開鍵/秘密鍵のペアを作成鍵交換を実行し、デジタル署名を生成し、検証するために使用されている非対称アルゴリズムの使用であるため、正しくありません。
×:公開鍵基盤は機密性と完全性を提供し、公開鍵暗号は認証と否認防止を提供します。
公開鍵基盤自体は、認証、否認防止、機密性、完全性を提供しているわけではないので、間違っています。
#11. インサイダー取引は意図せぬ情報の伝達によって生じてしまうことがある。次のうち、このような事態を備えるために最も適切なアクセス制御モデルは何か。
〇:ブリューワーナッシュモデル(Brewer-Nash Model)
ブリューワーナッシュモデル(Brewer-Nash Model)とは、インサイダー取引などの組織内の情報のフローに着目したセキュリティモデルです。インサイダー取引とは、内部情報が外部に漏れ出ることで起こります。現実問題、口伝えに無関係な人に知り渡っていくことで思わぬところにまで情報がいきわたることがあります。そんな情報の流れを考慮に入れるため、シミュレーションのような形でアクセス権限を決めます。
×:格子ベースアクセスコントロール
格子ベースアクセスコントロールとは、一つの主体が複数のアクセス権を持ち得ることを想定し、アクセスコントロールをある条件下で取りえるすべての関係性として考えることです。
×:Bibaモデル
Bibaモデルとは、データが勝手に変更されないことを示すセキュリティモデルの一つです。
×:ハリソンルゾウルマンモデル
ハリソンルゾウルマン(Harrison-Ruzzo-Ullman)モデルとは、グラハムデニングモデルの8つルールをアクセス制御マトリクスを使って6つのルールに集約したモデルです。
#12. 暗号化を2回しているのにさほど暗号強度がないと言えるのは、次のうちどの攻撃に依存するものか。
〇:中間一致攻撃
中間一致攻撃とは、暗号と復号を同時にすることにより鍵を取得する攻撃です。DESのように古い暗号化方式であっても、暗号化を2回繰り返せば安全であろうと一瞬思います。しかしながら、2回暗号化してもさほど強度が上がりません。暗号化を2回繰り返すと、平文、暗号文1回目、暗号文2回目の3つができます。めぼしい鍵をひとつずつあてはめていきもしもそれが正しい鍵であるとき、暗号と復号を同時に行っていけばどこかで一致します。わざわざ2回も暗号化しているのに、暗号文から平文を見つけるのとあまり変わりません。共通鍵暗号化方式の一つであるDESは脆弱性が発見された後、数段階DESを行う方法が考えられました。2DESではこの中間一致攻撃の対象になるため、3回を繰り返す3DESという方法が考案されました。よって正解は、「中間一致攻撃」になります。
×:CRIME攻撃
CRIME攻撃とは、暗号文の圧縮率から元のデータを解読する攻撃です。
×:BEAST攻撃
BEAST攻撃とは、Web通信での暗号化の脆弱性を利用して、盗聴する攻撃です。
×:サイドチャネル攻撃
サイドチャネル攻撃とは、物理的な情報からシステムデータを盗聴する攻撃です。
#13. ストリーミング暗号をするには何を使えばよいでしょう?
〇:ワンタイムパッド
ストリーム暗号は、ワンタイムパッドの技術を参照しています。
×:AES
AESは対称ブロック暗号であるため、正しくありません。ブロック暗号は、暗号化および復号の目的で使用される場合、メッセージはビットのブロックに分割されます。
×:ブロック暗号
ブロック暗号は、暗号化および復号化目的のために使用されます。メッセージは、ビットのブロックに分割されているため、間違っています。
×:RSA
RSAは、非対称アルゴリズムであるため、正しくありません。
#14. ジェフは新製品に暗号化技術を取り得たい。インターネット上に公開されている暗号化方法を検討しているようだ。どのような助言をするべきか。
暗号アルゴリズムは暗号する計算を指しているものであり、暗号アルゴリズムが公開されていたとしても解読には膨大な労力を割くことになっている。AESなどの現代の暗号を提供する暗号アルゴリズムは公開されている。逆に、自社開発をした場合、隠すことによるセキュリティを持っているものの、大変なリソースを割くことになるためお勧めできない。
#15. 次のうちデジタル署名の作成方法として適切なものはどれか?
〇:送信者は、自分の秘密鍵でメッセージダイジェストを暗号化します。
デジタル署名は、送信者の秘密鍵で暗号化されたハッシュ値です。デジタル署名の行為は秘密鍵でメッセージのハッシュ値を暗号化することを意味します。送信者は、自分の秘密鍵を用いてそのハッシュ値を暗号化することになります。受信者がメッセージを受信すると、彼女は、メッセージにハッシュ関数を実行し、自身でハッシュ値を生成します。それから送信者のの公開鍵で送信されたハッシュ値(デジタル署名)を解読します。受信者は、2つの値を比較し、それらが同じであれば、メッセージが送信中に変更されていないことを確認することができます。
×:送信者は、自分の公開鍵でメッセージダイジェストを暗号化します。
送信者は、メッセージが自分の公開鍵でダイジェストを暗号化した場合、受信者がそれを解読することはできませんので、間違っています。受信者が発生してはならない送信者の秘密鍵へのアクセスが必要になります。秘密鍵は常に秘密にする必要があります。
×:受信者は、自分の秘密鍵でメッセージダイジェストを暗号化します。
受信機は、メッセージが送信者の公開鍵でダイジェストを解読しなければならないので、間違っています。メッセージダイジェストは、唯一の送信者の公開鍵で復号することができ、送信者の秘密鍵で暗号化されています。
×:受信者は、自分の公開鍵でメッセージダイジェストを暗号化します。
受信機は、メッセージが送信者の公開鍵でダイジェストを解読しなければならないので、間違っています。メッセージダイジェストは、唯一の送信者の公開鍵で復号することができ、送信者の秘密鍵で暗号化されています。
#16. AESのアルゴリズムは、何のために使用されていますか?
〇:データの暗号化
AES(Advanced Encryption Standard)は、以前のデファクトスタンダードであるデータ暗号化規格(DES)を改善するために開発されたデータ暗号化規格です。対称アルゴリズムとしては、AESはデータを暗号化するために使用されます。よって正解は、「データの暗号化」になります。
ほかの選択肢でもAESを利用するシーンはありますが、データの暗号化が最も焦点のあっている、もしくはマシな回答です。このように、すべて正しいと思われる中から選択するケースもあります。
×:データの整合性
デジタル署名の特性です。
×:キーリカバリ
復号やキーエスクローの特性です。
×:対称鍵の配布
AESの配布のために対称鍵を用いることは鍵配送問題に低触します。
#17. 次のうちClark-Wilsonアクセスモデルの共通の関連性はどれですか?
〇:定型的トランザクション
クラーク・ウィルソン(Clark-Wilson)モデルでは、被験者はこのアクセスがどのように行われるかを制御する何らかのタイプのアプリケーションまたはプログラムを経由することなく、オブジェクトにアクセスすることはできません。サブジェクト(通常はユーザ)はアプリケーションに連動する形で、「定型的トランザクション」として定義されているアプリケーションソフトウェア内のアクセスルールに基づいて必要なオブジェクトにアクセスできます。
×:チャイルドウォールモデル
ユーザーの以前の行動に応じて動的に変更できるアクセスコントロールを提供するために作成されたBrewer Nashモデルの別の名前であるため、間違っています。これは、アクセス試行や利害の衝突から形作られるもので、被験者と物体との間に情報が流れることはありません。このモデルでは、サブジェクトが異なるデータセットにある別のオブジェクトを読み取れない場合にのみ、サブジェクトがオブジェクトに書き込むことができます。
×:アクセスタプル
Clark-Wilsonモデルはアクセスタプルではなくアクセストリプルを使用するため、正しくありません。アクセストリプルは、対象プログラムオブジェクトである。これは、サブジェクトが認可されたプログラムを通じてオブジェクトにのみアクセスできることを保証します。
×:Write Up及びWrite Down
Clark-WilsonモデルにはWrite Up及びWrite Downがないため、正しくありません。これらのルールはBell-LaPadulaとBibaモデルに関連しています。 Bell-LaPadulaモデルには、読み込まれていない単純なセキュリティルールと、書き留められていないスタープロパティルールが含まれています。 Bibaモデルには、読み込まれていないシンプル完全性公理と、書かれていないスター完全性公理が含まれています。
#18. ハッシュの衝突現象によって生じる問題はどれか。
衝突とは、あるハッシュ関数から異なる2つのデータのハッシュ値が同じになること。ハッシュ化は一方向暗号であり、元の平文がいずれかであることがわからなくなります。
#19. ケルクホフスの原理によれば、漏洩していけないものはどれか。
ケルクホフスの原理とは、暗号は秘密鍵以外の全てが知られても安全であるべきという考え方です。データを暗号化するときには、秘密鍵とその秘密鍵を使ってどのように暗号化するかを決めます。アウグスト・ケルクホフスさんは、どのように暗号化されているかを知られたとしても、秘密鍵さえばれなければ解読されないようにしろと言うのです。暗号化は、人類の戦いの歴史とともにあります。敵にばれずに作戦を味方に伝えることが大きな目的です。戦いの中では、スパイによってその設計書や暗号化装置を盗まれたりすることもあるでしょう。そのため、仕組みがどれだけ分かったとしても、鍵がなければ解かれないような暗号をしなければならないのです。よって正解は、「秘密鍵」になります。
#20. 仮想ストレージは、システムメモリ用のRAMと二次記憶装置を組み合わせています。次のうち仮想ストレージに関するセキュリティ上の懸念事項はどれですか?
〇:複数のプロセスが同じリソースを使用している
システムは、RAMメモリ空間を拡張するために予約されているハードドライブスペース(スワップスペースと呼ばれる)を使用します。システムが揮発性メモリ空間をいっぱいになると、メモリからハードドライブにデータが書き込まれます。プログラムがこのデータへのアクセスを要求すると、ハードドライブからページフレームと呼ばれる特定の単位でメモリに戻されます。ハードディスクのページに保存されているデータにアクセスすると、物理ディスクの読み書きアクセスが必要になるため、メモリに保存されているデータにアクセスするより時間がかかります。仮想スワップ領域を使用するセキュリティ上の問題は、2つ以上のプロセスが同じリソースを使用し、データが破損または破損する可能性があることです。
×:クッキーがメモリ内に永続的に残ることを可能にする
仮想記憶域はCookieに関連していないため、正しくありません。仮想ストレージは、ハードドライブスペースを使用してRAMメモリスペースを拡張します。 Cookieは、主にWebブラウザで使用される小さなテキストファイルです。クッキーには、Webサイト、サイト設定、ショッピング履歴の資格情報を含めることができます。 Cookieは、Webサーバーベースのセッションを維持するためにも一般的に使用されます。
×:サイドチャネル攻撃が可能になる
サイドチャネル攻撃は物理的な攻撃であるため、正しくありません。この種の攻撃では、放棄された放射線、処理に要した時間、タスクを実行するために消費された電力などからメカニズム(スマートカードや暗号化プロセッサなど)がどのように機能するかに関する情報を収集します。情報を使用して、そのメカニズムをリバースエンジニアリングして、セキュリティタスクの実行方法を明らかにします。これは仮想ストレージに関連していません。
×:2つのプロセスがサービス拒否攻撃を実行できる
オペレーティングシステムがすべてのリソース間でメモリを共有する必要があるため、プロセス間でリソースを共有しているシステム内で最大の脅威は、あるプロセスが他のプロセスのリソースに悪影響を及ぼすことです。これはメモリの場合には、特に当てはまります。なぜならすべてのそれらが機密であるかどうかに関係なく、そこに命令が格納されるからです。2つのプロセスが連携してサービス拒否攻撃を行うことは可能ですが、これは仮想ストレージの使用の有無にかかわらず実行できる攻撃の1つに過ぎません。